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Abstract: In their study of water waves, Massimiliano Berti, Livia Corsi, Alberto Maspero, and

Paulo Ventura, came up with two intriguing conjectured identities involving certain weighted sums

over the Boolean lattice. They were able to prove the first one, while the second is still open. In

this methodological note, we will describe how to generate many terms of these types of weighted

sums, and if in luck, evaluate them in closed-form. We were able to use this approach to give a

new proof of their first conjecture, and while we failed to prove the second conjecture, we give

overwhelming evidence for its veracity. In this second version, we are happy to announce that

Mark van Hoeij was able to complete the proof of the second conjecture, by explicitly solving the

second-order recurrence mentioned at the end.

An Intriguing Email message from Alberto Maspero

Awhile ago one of us (DZ) received an email message [M], with the following.

In our current study of water waves [BCMV], continuing our work in [BMV], and other papers,

we came across the following sums.

Let p ≥ 2, 1 ≤ q ≤ p− 1 and 0 < j1 < j2 < . . . < jq < p be positive integers. Define

n(p)
q (j1, . . . , jq) := (−12)qj1 · · · jq

j1(j2 − j1) · · · (jq − jq−1)(p− jq)

(p3 − p + j1 − j31) · · · (p3 − p + jq − j3q )
, (1)

and

g(p)q (j1, . . . , jq) := −28

9
p2 +

49

45
q +

32

9
j21 −

4

9
− 4

9

p3 − p

j1
+

5

18
(p3 − p)

(
1

j1
+ · · ·+ 1

jq

)
(2)

38

15

(
j21 + · · ·+ j2q

)
+
p3 − p

5

(
p + j1

p2 + j21 + pj1 − 1
+ . . . +

p + jq
p2 + j2q + pjq − 1

)
−13

9
(j1j2+j2j3+· · ·+jqp) .

The following identities seem to hold.

p−1∑
q=1

∑
0<j1<...<jq<p

n(p)
q (j1, . . . , jq) = −p . (3)

p−1∑
q=1

∑
0<j1<...<jq<p

n(p)
q (j1, . . . , jq) g(p)q (j1, . . . .jq) = p(p + 1)2 . (4)

Maspero concluded:

“We actually managed, after dire efforts, to prove (3), whereas claim (4) seems out of reach. We

just verified it for p = 2, . . . , 21.”
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Why are such sums interesting?

Note that the sums in (3) and (4) are weighted sums defined over all non-empty subsets of the set

{1...p−1}. Hence to compute many terms, straight from the definition, is exponentially expensive.

They are a bit unnatural in that the symbol p has both the roles of integer and of variable. Our

first step is to decouple these two roles of p, introduce a formal variable x, and define

N(x; j1, . . . , jq) := (−12)qj1 · · · jq
j1(j2 − j1) · · · (jq − jq−1)(x− jq)

(x3 − x + j1 − j31) · · · (x3 − x + jq − j3q )
, (1′)

G(x; j1, . . . , jq) := −28

9
x2 +

49

45
q +

32

9
j21 −

4

9
− 4

9

x3 − x

j1
+

5

18
(x3 − x)

(
1

j1
+ · · ·+ 1

jq

)
(2′)

38

15

(
j21 + · · ·+ j2q

)
+
x3 − x

5

(
x + j1

x2 + j21 + xj1 − 1
+ . . . +

x + jq
x2 + j2q + xjq − 1

)
−13

9
(j1j2+j2j3+· · ·+jq−1jq+jqx) .

Note that N(p; j1, . . . , jq) = n
(p)
q (j1, . . . , jq) and G(p; j1, . . . , jq) = g

(p)
q (j1, . . . , jq).

We are interested in efficient computation, and if possible, explicit evaluation of

Ap(x) :=

p−1∑
q=1

∑
0<j1<...<jq<p

N(x; j1, . . . , jq) , (3′)

and

Cp(x) :=

p−1∑
q=1

∑
0<j1<...<jq<p

N(x; j1, . . . .jq)G(x; j1, . . . .jq) . (4′)

In order to facilitate dynamical programming, it is natural to consider these weighted sums where

the largest member of the subset, jq, is fixed. So we define

Bp(x) :=
∑

0<j1<...<jq=p

N(x; j1, . . . , jq) , (3′′)

and

Dp(x) :=
∑

0<j1<...<jq=p

N(x; j1, . . . , jq)G(x; j1, . . . , jq) . (4′′)

Once the quantities Bp(x) and Dp(x) are known, our original quantities of interest, Ap(x) and

Cp(x), can be evaluated using

Ap(x) =

p−1∑
p′=1

Bp′(x) .

Cp(x) =

p−1∑
p′=1

Dp′(x) .
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The general framework

Note that the weights N(x; j1, . . . , jq) and G(x; j1, . . . , jq) have a recursive “Markovian” structure.

• If you know N(x; j1, . . . , jq−1), you can quickly get N(x; j1, . . . , jq−1, jq), by multiplying by a

certain function of (jq−1, jq).

• If you know G(x; j1, . . . , jq−1), you can quickly get G(x; j1, . . . , jq−1, jq), by adding a certain

(different) function of (jq−1, jq).

This leads us to consider the following general set-up.

Definition: Let f1(X) be an arbitrary uni-variate function, and f2(X,Y ) an arbitrary bivariate

function. Define the weight, for singleton sets {j1}

W (f1, f2; [j1]) := f1(j1) ,

and for sets with more than one element, recursively (where we write j1, . . . , jq in increasing order):

W (f1, f2; [j1, . . . , jq]) := W (f1, f2; [j1, . . . , jq−1]) · f2(jq−1, jq) .

Similarly let g1(X) and g2(X,Y ) be arbitrary univariate and bivariate functions and define

V (g1, g2; [j1]) := g1(j1) ,

and for sets with more than one element, recursively

V (g1, g2; [j1, . . . , jq]) := V (g1, g2; [j1, . . . , jq−1]) + g2(jq−1, jq) .

Note that the original [BCMV] summations have the following f1, f2, g1, g2:

f1(X) = − 12X2 (x−X)

−X3 + x3 + X − x
,

f2(X,Y ) = − 12Y (Y −X) (x− Y )

(x−X) (−Y 3 + x3 + Y − x)
,

g1(X) = −28x2

9
+

29

45
+

274X2

45
− x3 − x

6X
+

(
x3 − x

)
(x + X)

5X2 + 5xX + 5x2 − 5
− 13xX

9
,

g2(X,Y ) =
5
18x

3 − 5
18x

Y
+

38Y 2

15
+

(
x3 − x

)
(x + Y )

5Y 2 + 5xY + 5x2 − 5
− 13XY

9
− 13 (Y −X)x

9
+

49

45
.

The general analogs of Ap(x), Bp(x), Cp(x) and Dp(x), let’s call them ap, bp, cp, and dp, respec-

tively: are

bp :=
∑

0<j1<...<jq=p

W (f1, f2; [j1, . . . , jq]) ,
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and then

ap =

p−1∑
p′=1

bp′ .

dp :=
∑

0<j1<...<jq=p

W (f1, f2; [j1, . . . , jq])V (f1, f2; [j1, . . . , jq]) ,

and then

cp =

p−1∑
p′=1

dp′ .

Let’s first try to examine bp.

We can break-up the sum that defines bp, where every summand has jq = p, according to the value

of jq−1:

bp :=
∑

0<j1<...<jq
jq=p

W (f1, f2; [j1, . . . , jq]) =

p−1∑
p′=1

∑
0<j1<...<jq−1<p

jq−1=p′

W (f1, f2; [j1, . . . , jq−1, p]) =

p−1∑
p′=1

∑
0<j1<...<jq−1

jq−1=p′

W (f1, f2; [j1, . . . , jq−1]) · f2(p′, p) =

p−1∑
p′=1

f2(p′, p)

 ∑
0<j1<...<jq−1=p′

W (f1, f2; [j1, . . . , jq−1])

 =

p−1∑
p′=1

f2(p′, p) bp′ .

Hence the sequence bp can be computed in quadratic-time using the recurrence

bp =

p−1∑
p′=1

f2(p′, p) bp′ ,

subject to the initial condition

b1 = f1(1) .

A similar argument, that we omit, enables us to get a quadratic-time recurrence for dp, that assumes

that bp is already known.

Once we get a hold of bp and dp, we can recover ap and cp using ap =
∑p−1

p′=1 bp′ and cp =
∑p−1

p′=1 dp′ .

Let’s go back to specializing to the [BCMV] (already proved by them) conjecture (3).

If we are lucky and we can conjecture an explicit expression for Bp(x), then all we have to do is

verify that this conjectured expression also satisfies the same recurrence and initial condition. With
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the above f2(X,Y ) the recurrence becomes

Bp(x) = −12
p(x− p)

x3 − x + p− p3

p +

p−1∑
p′=1

p− p′

x− p′
Bp′(x)

 , (5)

with the initial condition B0(x) = 0.

Cranking out the first 20 terms one easily conjectures

Bp(x) =
12p2 (p− x)

x (x + 1) (x− 1)
,

and it is routine to verify (even by hand, but Maple is glad to do it for you) that (5) is satisfied if

Bp(x) is replaced by the above right side. Then we ask Maple to kindly sum

Ap(x) =

p−1∑
p′=1

12p′2 (p′ − x)

x (x + 1) (x− 1)
,

giving

Ap(x) =
p (p− 1)

(
3 p2 − 4xp− 3 p + 2x

)
x (x− 1) (x + 1)

.

Now what [BCMV] are really interested in is not Ap(x), in general, but the special case x = p, i.e.

in Ap(p). Plugging-in x = p above, and simplifying gives that indeed

Ap(p) = −p .

So we have a new proof of the already-proved-by-them identity (3) of [BCMV].

We can get similar dynamical programming (quadratic-time) recurrence for Dp(x) that expresses

it in terms of previous values {Dp′(x) : 1 ≤ p′ ≤ p − 1} and (the already known) Bp(x). Using

the above proved expression for the latter, we can compute many terms. Alas, it is no longer

a nice rational function, and the sequence seems very complicated. But using the holonomic

ansatz [Z] (see [K] for a great Mathematica implementation) one can first guess (very complicated!)

linear recurrences for both Dp(x) and Cp(x), that nevertheless, to our pleasant surprise, are mere

second order (but with very complicated coefficients). See procedures DxH(p,x) and CxH(p,x)

in our Maple package mentioned below. These recurrences are first guessed, using undetermined

coefficients, implemented in our Maple package FindRec.txt, available from:

https://sites.math.rutgers.edu/~zeilberg/tokhniot/FindRec.txt .

Once guessed, they are all automatically and rigorously provable using the holonomic ansatz as

implemented by Koutschan, i.e. the sequences defined by these second-order recurrences also

satisfy the original recurrences.

This enables us to easily compute the first 2000 terms of the sequence {Cp(x)} that are all very

complicated rational functions of x. But when we plug-in x = p the sequence {Cp(p)} coincides
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with the conjectured sequence {p(p + 1)2}. Of course, this is not a rigorous proof, but being

empiricists, knowing that it is true for the first 2000 terms, is good enough for us.

Maple package and input and output files

Everything is implemented in the Maple package BCMV.txt available from

https://sites.math.rutgers.edu/~zeilberg/tokhniot/BCMV.txt .

The front of this article

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/bcmv.html ,

contains the input and output files that rigorously prove the above explicit expressions for Ap(x)

and Bp(x), and that empirically verifies (4) all the way to p = 2000.

Postscript written Feb. 28, 2024: Mark van Hoeij met our challenge, to explicitly solve the

recurrence satisfied by Cp(x), that enables plugging-in x = p into it and proving that indeed

Cp(p) = p(p + 1)2.

See:

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/bcmvChallenge.txt .

For a detailed explanation, see the postscript kindly written by Mark van Hoeij:

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/bcmvMvH.html .

This completes the (rigorous!) proof of Conjecture (4). A donation of 100 dollars to the OEIS, in

Mark van Hoeij’s honor, has been made.
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