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Preface

In the Fall of 1981, I had the pleasure and honor of living next-door to the eminent combinatorialist
Joel Spencer, who was then a visiting professor at the Weizmann Institute of Science in Israel. Joel
was always glad to talk to me, provided that I spoke in Hebrew. Joel is also a great punner, and
was very proud when he made his first pun in Hebrew, during a volleyball game with other math
faculty and students, when he said “kadur sheli” that could mean “my ball” but also “Lee [Segal]’s
ball”. One day I got as a present a set of “Russian Dolls” (a.k.a. as Matryoshkas or Babushkas),
which is a nested set of dolls. Trying to test Joel’s knowledge of enumeration (after all he is an
expert in “Hungarian”, rather than enumerative, combinatorics), I asked him:

In how many ways can one reassemble an n-nested Russian Doll?,

and he immediately replied: This is a Stirling question, it rings a Bell.

Several Russian Dolls

Almost thirty years later, my brilliant student, Thotsaporn “Aek” Thanatipanonda asked me what
happens if you have several, say r, identical Russian Dolls. Thanks to Sloane, MathSciNet, and
Google scholar, we quickly found out that the case r = 2 goes back to Comtet[C] and is featured in
Sloane’s A020554. See also [Ba] and [R], and for an insightful species treatment see [L] and [P].
The case r = 3 was nicely handled by Ed Bender[Be], while the general case was given its coup de
grâce by John Devitt and David Jackson[DJ], who used a very ingenious generatingfunctionology
approach.

As Herb Wilf[W1] famously said, an “answer” to an enumeration question is an efficient algorithm
to generate many terms in the enumerating sequence. Explicit formulas are just one such way,
and often not the most efficient one! In this article, I will describe a “calculus” approach, using
differential operators, that has the following advantages.

1. It is somewhat faster than using the Devitt-Jackson[DJ] complicated exponential generating
function.
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2. It is so flexible that it can handle non-identical Russian Dolls. Given a1 single-births, a2 pairs
of (identical) twins, a3 sets of (identical) triplets, a4 sets of (identical) quadruplets, . . . , ak
sets of (identical) k-tuplets, . . ., (and you can’t tell identical twins etc. apart form each other),
in how many ways can you partition them into (not necessarily distinct) sets? This is useful if
the school principal has to assign them into (non-ordered) classes such that no identical-looking
children would be in the same class (or else their teacher won’t be able to tell them apart, and the
children can play tricks on her).

3. It can be used in conjunction with Wilf’s [Wi2] celebrated methodology for random selection
of combinatorial objects to design quick algorithms for selecting, uniformly at random, a mutli-set
set-partition of any given multiset.

4. It beautifully illustrates MacMahon’s lovely method of “differential operators” that transcribes
combinatorial operations into differential operators. MacMahon was very fond of it, and he nicely
described it in the entry Combinatorial Analysis of the eleventh edition of Encyclopeadia Britannica
[M].

5. It beautifully illustrates my favorite methodology of rigorous experimental mathematics. You
teach the computer how to do the combinatorics, it derives, all by itself, the (symbolic) differential
operator (that for r > 3 would be too complicated to derive by hand, let-alone apply, even for
MacMahon), and then the computer goes on and uses it to crank-out as many terms as desired in
the enumerating sequence.

6. It beautifully illustrates the notion of catalytic variables. These are variables corresponding
to quantities that we may not care about, but are nevertheless needed in order to facilitate the
enumeration. At the end of the day, we set them all equal to 1.

7. Last but not least, it enables me to contribute six new sequences to Sloane, the (beginnings
of) the enumerating sequence for the number of ways of reassembling r identical n-nested Russian
Dolls for 3 ≤ r ≤ 8. So far, only r = 1 (the Bell numbers, A000110) and r = 2 (Comtet’s sequence
A020554) are present there.

The Evolution Differential operator

A Baby Example: r = 1

For the sake of pedagogy, let’s first treat the classical case of one Russian Doll.

Suppose that you have a set partition of {1, 2, . . . , n− 1} with k sets. How can we accommodate a
new-comer n? Either she is shy (or anti-social), and decides to form her own new set {n}, or she is
outgoing and would like to join an existing set, for which she has k choices. If we call the “number
of sets” the “state”, then in the former case the new comer, n, caused the set-partition to move to
state k+ 1, while in each of the k latter cases, it stayed in state k. If we give state k the weight zk,
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then each and every set-partition of state k (with weight zk) gives rise to the “evolution”

zk → zk+1 + kzk .

In other words
zk → (z + z

d

dz
)zk .

This is true for each and every monomial zk, and by linearity for each polynomial. So if Pn(z) is
the sum of the weights of all set-partitions of {1, . . . , n}, then we have the differential-recurrence
equation:

Pn(z) = D1Pn−1(z) ,

where D1 is the differential operator

D1f(z) := (z + z
d

dz
)f(z) .

The initial condition is P0(z) = 1. If we are only interested in the total number of set partitions of
{1, 2, . . . , n}, then at the end of the day we plug-in z = 1, getting

Bn = Pn(1) .

This gives a quick way to crank-out a table of the first one thousand (or whatever) Bell numbers,
that is memory efficient. Once we are at day n, and know Pn(z), we can let the computer forget
about Pn−1(z) (and even about Bn−1, once it is printed out). Surprisingly, this turned out to be
much more efficient (for large n and using Maple) than using

Bn =
n−1∑
i=0

(
n− 1
i

)
Bi ,

or
∞∑
n=0

Bn
n!
zn = ee

z−1 .

A Toddler Example: r = 2

Suppose that we have n−1 pairs of identical twins, already arranged into sets. The only restriction
is that no two identical twins can be in the same set, but sets can be repeated. So we have a
multiset of sets, whose union, as a multiset, is 1222 . . . (n− 1)2.

Of course, no set can be repeated more than twice (why?). Let there be a sets, A1, . . . , Aa that
show up once, and let there be b sets B1, . . . , Bb that show up twice. We say that the state of this
arrangement is (a, b), and its weight is za1z

b
2.

The school principal has to place the newly-arrived pair of twins n and n, but he can’t put them
in the same set. There are seven cases.
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Case 1: Create two new singleton sets {n}2. There is only one way of doing it, and the new state
is (a, b+ 1), with weight za1z

b+1
2 . The corresponding operation on monomials is

f(z1, z2)→ z2f(z1, z2) .

Case 2: Create one new singleton set {n}, and place the other n into one of the existing A′is.
There are a ways of doing it, and the new state is (a+1, b), with weight za+1

1 zb2. The corresponding
operation on monomials is

f(z1, z2)→ z1

(
z1

d

dz1

)
f(z1, z2) .

Case 3: Create one new singleton set {n}, and place the other n into one of the existing B′is.
There are b ways of doing it, and the new state is (a + 3, b − 1), since one of the B’s became two
As, with the help of n. The weight of the new state is za+3

1 zb−1
2 . The corresponding operation on

monomials is

f(z1, z2)→ z3
1z
−1
2

(
z2

d

dz2

)
f(z1, z2) .

Case 4: Place the two twins n and n into two (different, of course) Ai’s. There are
(
a
2

)
ways

of doing it, and the new state remains (a, b), with weight za1z
b
2. The corresponding operation on

monomials is

f(z1, z2)→ 1
2

(
z2

1

d2

d2z1

)
f(z1, z2) .

Case 5: Place one of the new twins (n or n) into one of the Ai’s, and the other one into one of the
Bi’s. There are ab ways of doing it, and the new state is (a+ 2, b− 1), since one of the doubletons
B’s, let’s call it Bi, was lost, and it became the two distinct sets Bi and Bi ∪ {n}. The new weight
is za+2

1 zb−1
2 . The corresponding operation on monomials is

f(z1, z2)→ z2
1z
−1
2

(
z1
d

z1

)(
z2

d

dz2

)
f(z1, z2) .

Case 6: Place the twins (n and n) into two different Bi’s. There are
(
b
2

)
ways of doing it, and the

new state is (a + 4, b − 2), since two of the doubletons B’s, let’s call them Bi and Bj , were lost,
and they became the four distinct new sets Bi, Bi ∪ {n}, Bj and Bj ∪ {n}. The new weight is
za+4

1 zb−2
2 . The corresponding operation on monomials is

f(z1, z2)→ z4
1z
−2
2

1
2

(
z2

2

d2

dz2
2

)
f(z1, z2) .

Case 7: Place both of the new twins (n and n) into each of the two copies of the same Bi. There are
b ways of doing it, and the new state is the same, (a, b), since single sets stay single and doubletons
stay doubletons. The new weight is za1z

b
2. The corresponding operation on monomials is

f(z1, z2)→
(
z2

d

dz2

)
f(z1, z2) .
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Combing, we have just proved:

Fact: Let P (2)
n (z1, z2) be the sum of the weights of all multiset set-partitions of the multiset

{12 . . . n2}, with the weight being z1 to the power the number of sets that show up once times z2

to the power the number of sets that show up twice. Let D2 be the partial-differential operator
(where D1 := d

dz1
, D2 := d

dz2
),

D2 := z2D2 + 1/2 z1
4D2

2 + z1
3D1D2 + 1/2 z1

2D1
2 + z1

3D2 + z1
2D1 + z2 ,

then
P (2)
n (z1, z2) = D2P

(2)
n−1(z1, z2) .

The Comtet numbers are P (2)
n (1, 1).

The general case

Suppose that we already have a multiset set-partition of {1r . . . (n−1)r}, with a1 sets that show-up
once, a2 sets that show-up twice, . . ., ar sets that show-up r times. The state of this particular
multiset set-partion is (a1, a2, . . . , ar), and its weight is za1

1 . . . zarr .

We have to place the r identical new comers nr.

We must make the following decisions

1. How many of them would start their own singleton sets, say, c0

2. For the remaining r − c0 new members n, for i = 1, 2, . . . , r, how many of them, let’s call it ci,
would be placed in sets that show up i times.

After these decisions we have a vector of non-negative integers [c0, c1, . . . , cr], such that c0 + c1 +
. . .+ cr = r.

Once we decided that ci of the new n’s would go to sets that show up i times, we have to decide,
amongst those ci siblings which sets should be asked to invite them. These sets can be all different,
but they could all be different copies of the same set (if ci ≤ i). This naturally leads to an integer
partition λi = 1m12m23m3 . . . imi (written in multiplicity notation).

We have to place m1 of these siblings such that each of them goes to different sets. These make m1

of the formerly ai-repeated sets become (ai − 1)-repeated sets and creates m1 new singleton sets.
So a1 → a1 +m1, and ai−1 → ai−1 +m1 and ai → ai −m1. In terms of differential operators it is

f(z1, . . . , zr)→ (1/m1!)(z1zi−1Di)m1f(z1, . . . , zr) .

Similarly for 2m2 we have

f(z1, . . . , zr)→ (1/m2!)(z2zi−2Di)m2f(z1, . . . , zr) ,
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and so on.

So every possible scenario of placing the new identical r siblings of the n family corresponds to an
r+1 tuple:

T = [c0, λ1, . . . , λr] ,

where c0 is an integer, λ1, λ2, . . . , λr are integer partitions such that the largest part of λi is ≤ i,
and

c0 + |λ1|+ |λ2|+ . . .+ |λr| = r .

For each such scenario corresponds the “monomial” operator

P[T ] := zc0

r∏
i=1

Q[λi] ,

where, writing λi = 1m12m23m3 . . . imi (m1,m2 are now local variables, i.e. they are different, of
course, for each λi),

Q[λi] =
i∏

j=1

1
mj !

(zjzi−jDi)mj .

Here Di := d
dzi

and z0 := 1.

Finally, we can write down the evolution operator Dr:

Dr :=
∑

T scenario

P[T ] ,

and we have the

Theorem: Let P (r)
n (z1, z2, . . . , zr) be the sum of the weights of all multiset set-partions of the

multiset {1r . . . nr}, with the weight being z1 to the power the number of sets that show up once
times z2 to the power the number of sets that show up twice times . . . times zr to the power the
number of sets that show up r times, then

P (r)
n (z1, z2, . . . , zr) = DrP (r)

n−1(z1, z2, . . . , zr) .

The number of such multi-set set partitions is of course P (r)
n (1, 1, . . . , 1).

Non-Identical Russian Dolls

The operators Dr can be combined to yield the

Main Theorem: The number of ways of partitioning into sets a multiset consisting of m1 ele-
ments that appear once, m2 elements that appear twice, . . ., mr elements that appear r times, or
equivalently, the multiset

1 . . .m1(m1 + 1)2 . . . (m1 +m2)2 . . . (m1 + . . .+mr−1 + 1)r . . . (m1 + . . .+mr−1 +mr)r
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is computed as follows. First compute the polynomial in z1, . . . , zr:

P (z1, z2, . . . , zr) =

(
r∏
i=1

Dmii

)
(1) ,

and then plug-in z1 = 1, . . . , zr = 1.

Random Generation

Going back to the Stirling-Bell case, r = 1, the “differential recurrence” Pn(z) = (z + z d
dz )Pn−1(z)

is equivalent to the famous recurrence

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k) .

This can be used, according to Wilf[W2], to generate uniformly at random, a set-partion with k

sets as follows.

First pre-compute a table of S(n, k) using the recurrence. Now roll a loaded coin with probability
of Heads being S(n−1, k−1)/S(n, k) and probability of Tails being kS(n−1, k)/S(n, k). If it lands
Heads, recursively generate a random set-partitions of {1, 2, . . . , n− 1} with k − 1 sets, and adjoin
the singleton {n} to it, otherwise generate recursively a random set-partition of {1, 2, . . . , n − 1}
with k sets, and then roll a fair k-sided die, and accordingly decide which of the k members of the
set-partition should invite n to join it.

If we want a (uniformly) random set partition, then decide on the number of sets k, by rolling
a loaded n-faced die with probabilities of it landing k equalling S(n, k)/Bn, and then proceed as
before.

The differential-recurrence of the Theorem yields to a partial recurrence for the quantity, let’s call
it S(r)(n; a1, . . . , ar) for the number of multiset set-partitions of 1r . . . nr with a1 sets that show
up once, . . ., ar sets that show up r times. Using this the computer (all by itself!) can use the
Wilf Methodology to create a random-generation algorithm. The programming details are a bit
daunting, so we leave it as a challenge to the reader.

The Maple package BABUSHKAS

Everything here (except for the random-generation, for which we only have the simple r = 1 case)
is implemented in the Maple package BABUSHKAS available, via a link, from the webpage of this
article: http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/babushkas.html

or directly from: http://www.math.rutgers.edu/~zeilberg/tokhniot/BABUSHKAS . That webpage also con-
tains sample input and output, including the sequences for 1 ≤ r ≤ 8.

The main procedure is SeqBrn(r,n) that uses the present approach to generate the first n terms
of the enumerating sequence for the number of ways of reassembling r identical Russian Dolls.
SeqBrnDJ(r,n) does the same thing using the Devitt-Jackson approach. We are glad to report
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that they agree! As yet another check, we have the program SSP, that actually constructs the set
of all multi-set set partitions of any given multiset, and emables checking, for small values, with
the naive count. Procedure B(L) handles the case of non-identical Russian Dolls, or equivalently,
an arbitrary multiset, using the Main Theorem.

SeqCrn and SeqCrnDJ handle set-partitions of the multiset 1r . . . nr, in other words, each set can
only show up once. This is simply P (r)

n (1, 0, . . . , 0), in the above notation.

Full details are available on-line by typing ezra();.

The sequences

Even though much more data is available in the above-mentioned webpage, and these sequences
will soon be submitted to Sloane, let us cite the first ten terms for r = 1, 2, 3, 4.

r = 1 : 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975 (the Bell Numbers).

r = 2 : 1, 3, 16, 139, 1750, 29388, 624889, 16255738, 504717929, 18353177160 (the Comtet numbers)

r = 3 : 1, 4, 39, 862, 35775, 2406208, 238773109, 32867762616, 6009498859909, 1412846181645855

r = 4 : 1, 5, 81, 4079, 507549, 127126912, 55643064708, 38715666455777, 40095856807088486,
58901884724160709571.
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