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Abstract: Armin Straub’s beautiful article (https://arxiv.org/abs/1601.07161) concludes with

two intriguing conjectures about the number, and maximal size, of (2n+ 1, 2n+ 3)-core partitions

with distinct parts. These were proved by ingenious, but complicated, arguments by Sherry H.F.

Yan, Guizhi Qin, Zemin Jin, Robin D.P. Zhou ( https://arxiv.org/abs/1604.03729). In the present

article, we first comment that these results can be proved faster by “experimental mathematics”

methods, that are easily rigorizable. We then develop relatively efficient, symbolic-computational,

algorithms, based on non-linear functional recurrences, to generate what we call the Straub poly-

nomials, where Sn(q) is the generating function, according to size, of the set of (2n+1, 2n+3)-core

partitions with distinct parts, and compute the first 21 of them. These are used to deduce explicit

expressions, as polynomials in n, for the mean, variance, and the third through the seventh moments

(about the mean) of the random variable “size” defined on (2n + 1, 2n + 3)-core partitions with

distinct parts. In particular we show that this random variable is not asymptotically normal, and

the limit of the coefficient of variation is
√

14010/150 = 0.789092305... the scaled-limit of the third

moment (skewness) is (396793/390815488) ·
√

467 · 7680 = 1.92278748.., and that the scaled-limit

of the 4th-moment (kurtosis) is 145309380/16792853 = 8.6530490.... We are offering to donate one

hundred dollars to the OEIS foundation in honor of the first to identify the limiting distribution.

Supporting Maple Packages and Output

All the results in this article were obtained by the use of the Maple packages

• http://www.math.rutgers.edu/~zeilberg/tokhniot/Armin.txt ,

• http://www.math.rutgers.edu/~zeilberg/tokhniot/core.txt ,

whose output files, along with links to diagrams, are available from the front of this article

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/armin.html .

(s,t)-Core Partitions and Drew Armstrong’s Ex-Conjecture

Recall that a partition is a non-increasing sequence of positive integers λ = (λ1, . . . , λk) with k ≥ 0,

called its number of parts; n := λ1 + . . .+λk is called its size, and we say that λ is a partition of n.

Also recall that the Ferrers diagram (or equivalently, using empty squares rather than dots, Young

diagram) of a partition λ is obtained by placing, in a left-justified way, λi dots at the i-th row. For
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example, the Ferrers diagram of the partition (5, 4, 2, 1, 1) is

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗
∗
∗

.

Recall also that the hook length of a dot (i, j) in the Ferrers diagram, 1 ≤ j ≤ λi, is the number of

dots to its right (in the same row) plus the number of dots below it (in the same column) plus one

(for itself), in other words λi−i+λ′j−j+1, where λ′ is the conjugate partition, obtained by reversing

the roles of rows and columns. (For example if λ = (5, 4, 2, 1, 1) as above, then λ′ = (5, 3, 2, 2, 1)).

Here is a table of hook-lengths of the above partition, (5, 4, 2, 1, 1):

9 6 4 3 1
7 4 1 1
4 1
2
1

.

It follows that its set of hook-lengths is {1, 2, 3, 4, 6, 7, 9}. A partition is called an s-core if none of

its hook-lengths is s. For example, the above partition, (5, 4, 2, 1, 1), is a 5-core, and an i-core for

all i ≥ 10.

A partition is a simultaneous (s, t)-core partition if it avoids both s and t. For example the above

partition, (5, 4, 2, 1, 1), is a (5, 11)-core partition (and a (5, 12)-core partition, and a (100, 103)-core

partition etc.).

For a lucid and engaging account, see [AHJ].

As mentioned in [AHJ], Jaclyn Anderson ([A]) very elegantly proved the following.

Theorem ([A]) If s and t are relatively prime positive integers, then there are exactly

(s+ t− 1)!

s!t!
,

(s, t)-core partitions.

For example, here are the (3 + 5− 1)!/(3!5!) = 7 (3, 5)-core partitions:

{empty, 1, 2, 11, 31, 211, 4211} .

Drew Armstrong ([AHJ], conjecture 2.6) conjectured, what is now the following theorem.
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Theorem ([J]): The average size of an (s, t)-core partition is given by the nice polynomial

(s− 1)(t− 1)(s+ t+ 1)

24
.

For example, the (respective) sizes of the above-mentioned (3, 5)-core partitions are

0, 1, 2, 2, 4, 4, 8 ,

hence the average size is
0 + 1 + 2 + 2 + 4 + 4 + 8

7
=

21

7
= 3 ,

and this agrees with Armstrong’s conjecture, since

(3− 1)(5− 1)(3 + 5 + 1)

24
= 3 .

Armstrong’s conjecture was proved by Paul Johnson ([J]) using a very complicated (but ingenious!)

argument (that does much more). Shortly after, and almost simultaneously (no pun intended) it was

re-proved by Victor Wang [Wan], using another ingenious (and even more complicated) argument,

that also does much more, in particular, proving an intriguing conjecture of Tewodros Amdeberhan

and Emily Sergel ([AL]). Prior to the full proofs by Johnson and Wang, Richard Stanley and

Fabrizio Zanello [StaZ] came up with a nice (but rather ad hoc) proof of the important special case

of (s, s+ 1)-core partitions. An explicit expression for the variance was found by Marko Thiel and

Nathan Williams ([TW]).

Ekhad and Zeilberger ([EZ]) went far beyond, and derived explicit expressions for the first 6 mo-

ments for the general (s, t)-core partitions, and the first 9 moments for the case (s, s+ 1), and used

them to find the scaled limits up to the ninth, that strongly suggest that the limiting distribution

is the continuous random variable
∞∑
k=1

z2k + z̃2k
4π2k2

,

where zk and z̃k are jointly independent sequences of independent standard normal random vari-

ables.

Simultaneous Core Partitions into Distinct Parts

Tewodros Amdeberhan ([Am]) initiated the study of simultaneous core partitions with distinct

parts, and conjectured that the number of (s, s+ 1)-core partitions with distinct parts is given by

the Fibonacci number Fs+1. This was proved by Armin Straub ([Str]) and Huan Xion ([X]). Xion

also proved a conjectured expression of Amdeberhan for the expected size, in terms of a double sum

involving Fibonacci numbers. A more explicit expression was derived by the first-named author

[Za], who also derived, assisted by his computer, explicit expressions (as rational functions in

Fs, Fs+1, and s) for the first 16 moments. He then deduced that the scaled moments tend to the
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moments of the standard normal distribution, giving strong evidence (that could be turned into a

fully rigorous proof, using the method of [Ze2]) that the random variable ‘size’ defined over distinct

(s, s+ 1)-core partitions is asymptotically normal.

This is surprising, since, as already mentioned above, it was shown in [EZ] that when defined over

all (not necessarily distinct) partitions, the random variable ‘size’ is not asymptotically normal.

At the end of his beautiful paper, [Str], (where, among many other things, the author describes a

beautiful new elegant partition identity between Odd and Distinct integer partitions which preserves

the perimeter, that should have been found by Euler (but had to wait for Straub)) Armin Straub

conjectured two intriguing enumeration results.

Theorem 0 (conjectured in [Str], first proved in [YQJZ]) The number of (2n + 1, 2n + 3)-core

partitions with distinct parts equals 4n.

Theorem 0’: (conjectured in [Str], first proved in [YQJZ]) The largest size of a (2n+1, 2n+3)-core

partition with distinct parts is 1
24 (5n+ 11)n (n+ 2) (n+ 1).

The proofs in [YQJZ] use ingenious, but rather complicated, combinatorial arguments. We will, in

this article, give new, much simpler, ‘experimental-mathematical’ proofs, that can be easily made

rigorous. But our main purpose is to establish explicit expressions for the expectation, variance, and

all the moments up to the seventh. With more computing power, it should be possible to go beyond.

We then go on and use these explicit (polynomial) expressions in order to find the limits of the

scaled moments, giving exact values for the first seven moments of the limiting (scaled) probability

distribution of the random variable ‘size’ over (2n+1, 2n+3)-core partitions with distinct parts (as

n→∞), and one of us (DZ) is pledging $100 to the OEIS foundation for identifying that limiting

(continuous) probability distribution.

Explicit Expressions for the first Seven Moments

Theorem 1: The average size of a (2n+ 1, 2n+ 3)-core partition with distinct parts is

1

32
(10n3 + 27n2 + 19n) .

Note that the corresponding average taken over all partitions, according to Armstrong’s ex-conjecture,

is 1
6n(n+1)(2n+5) = 1

3n
3+O(n2), while, according to Theorem 1, our average (i.e. for the distinct

case) is 5
16n

3 +O(n2), so it is a bit less.

Theorem 2: The variance of the random variable ‘size’ defined on the set of (2n+ 1, 2n+ 3)-core

partitions with distinct parts is

1

15360
(934n6 + 4687n5 + 9700n4 + 10505n3 + 6256n2 + 1518n) .

Note that according to [EZ], the corresponding variance, taken over all partitions is

1

720
(2n+ 1) (2n+ 3) (2n+ 2)n (4n+ 5) (4n+ 4)
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which is 8
45n

6 + O(n5) = 0.1777777778n6 + O(n5), while for our case, according to Theorem 2, it

is 467
7680n

6 +O(n5) = 0.06080729167n6 +O(n5).

Theorem 3: The third moment (about the mean) of the random variable ‘size’ defined on (2n+

1, 2n+ 3)-core partitions with distinct parts is

1

27525120
· (793586n9 + 4945025n8 + 12775144n7 + 17215282n6 + 11839450n5 + 1535905n4

−4756804n3 − 4342612n2 − 1297776n) .

Theorem 4: The fourth moment (about the mean) of the random variable ‘size’ defined on

(2n+ 1, 2n+ 3)-core partitions with distinct parts is

1

54499737600
· (1743712560n12 + 13490284234n11 + 45408125279n10 + 87568584895n9

+109173019890n8 + 97494786972n7 + 68082466947n6 + 34594762895n5

+8734303600n4 + 3269131844n3 + 7648567524n2 + 4135638960n) .

Theorem 5: The fifth moment (about the mean) of the random variable ‘size’ defined on (2n +

1, 2n+ 3)-core partitions with distinct parts is

1

108825076039680
·n (n+ 1) (4115597238066n13+30331407775461n12+93240357590320n11+153901186416765n10

+154511084293844n9+126787455814599n8+115227024155664n7+42586120680111n6−95604599727502n5

−105409116317640n4+43165327777096n3+91113907956144n2−30975685518528n−65049004454400) .

Theorem 6: The sixth moment (about the mean) of the random variable ‘size’ defined on (2n+

1, 2n+ 3)-core partitions with distinct parts is

1

8288117791182028800
·

(459077029253573970n18+3986958940758529155n17+14588638597341766281n16+29315654117562943844n15

+38855616058049391120n14+52048632801161949890n13+87053992212835094382n12+102228197171521441748n11

+24538654588404043230n10 − 81063397918244586845n9 − 37681424022539337807n8

+128753068232342353072n7 + 136357236921377110920n6 − 109095423240535042640n5

−264555566724556223856n4−62480060539123323264n3+164786511770490504960n2+100625844884387235840n) .
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Theorem 7: The seventh moment (about the mean) of the random variable ‘size’ defined on

(2n+ 1, 2n+ 3)-core partitions with distinct parts is

n(n+ 1)

240 · 35 · 52 · 7 · 11 · 13 · 17 · 19
·

(203253344355858784830n19 + 1525941518277673062635n18 + 4376090780890032310694n17

+5920532244827036954724n16 + 7108181147332994381598n15 + 22516614862619041657440n14

+47737754432542468750710n13 + 21431538183386052191306n12

−77127349790945221221652n11 − 98788608530944679782107n10 + 91468628175188699900748n9

+276198594921821905993026n8

+53152679358583919475360n7 − 516374679437475960870016n6 − 696941224296942655687312n5

+164310592679893652073504n4 + 1420837514400804031281984n3

+1109985197630308975715328n2−745951061503715454673920n−1026387551269849288826880) .

Corollaries

1. The limit of the “coefficient of variation”, as n→∞, is 1
150

√
14010 = 0.7890923055426827989 . . ..

In particular, unlike (k, k+ 1)-core partitions with distinct parts discussed in [Za], there is no con-

centration about the mean.

2. The limit of the skewness, as n→∞, is 396793
390815488

√
467
√

7680 = 1.922787480888358667 . . .

3. The limit of the kurtosis, as n→∞, is 145309380
16792853 = 8.6530490084085 . . .

4. The limit of the scaled fifth moment (α5), as n→∞, is 3429664365055
156594294624768

√
467
√

7680 = 41.4777067204457 . . .

5. The limit of the scaled sixth moment (α6), as n→∞, is 382564191044644975
1552893421695616 = 246.35572905 . . ..

6. The limit of the scaled seventh moment (α7), as n → ∞, is 56459262321071884675
62988906654652346368

√
467
√

7680 =

697.5015509357 . . .

A New (“Experimental Math”) proof of Armin Straub’s Ex-Conjecture that the num-

ber of (2n+ 1, 2n+ 3)-core partitions with distinct parts equals 4n

The way Jaclyn Anderson proved her celebrated theorem ([An]) that if gcd(s, t) = 1, then the

number of (s, t)-core partitions equals (s+ t− 1)!/(s!t!) was by defining a bijection with the set of

order ideals of the poset

Ps,t := N\(sN + tN) ,

where N = {0, 1, 2, 3, . . . , } is the set of non-negative integers, and the partial-order relation c ≤P d

holds whenever d− c can be expressed as αs+ βt for some α, β ∈ N.
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The set of order ideals of Ps,t, in turn, is in bijection with the set of lattice paths in the two-

dimensional square lattice, from (0, 0) to (s, t) lying above the line sy−tx = 0. This correspondence

is used in the Maple package core.txt, and was used in [Za], but for our present purposes it is

more efficient to use order ideals.

Recall that an order ideal I, in a poset P , is a set of vertices of P such that if c ∈ I then all

elements, d, such that d ≤P c also belong to I. Equivalently, if d does not belong to I, then all

vertices c ‘above’ it (i.e. such c ≥P d, also do not belong to I.

Let s(n) be the number of order ideals of the lattice P2n+1,2n+3 with no consecutive labels. Recall

that, thanks to Jaclyn Anderson, this is the number of (2n+ 1, 2n+ 3)-core partitions with distinct

parts, our object of desire.

Let’s try and find an algorithm to compute the sequence {s(n)} for as many terms as possible.

Let’s review first how to prove that the number of order ideals of Pk+1,k+2, let’s call p(k), is

the Catalan number Ck+1. Let i be the smallest empty label on the hypotenuse, implying that

1, . . . , i− 1 are occupied, and ‘kicking out’ all vertices that are ≥P of the vertex labeled i, leaving

us with two connected components, triangles of sizes i − 2 and k − i, with independent decisions

regarding their order ideals. The ‘initial conditions’ are p(−1) = 1, p(0) = 1, and for k ≥ 1, we

have

p(k) =

k+1∑
i=1

p(i− 2)p(k − i) . (0)

Now let’s move-on to finding s(n), i.e. the number of order ideals of P2n+1,2n+3 without consecutive

labels.

A diagram of the lattice P2n+1,2n+3 (for n = 6) can be found in

http://www.math.rutgers.edu/~zeilberg/tokhniot/PictArmin/O2.html, (see also Figure 3 (page

5) of [YQJZ], where the lattice is drawn such that the rank-zero vertices are at the bottom rather

than on the diagonal).

Inspired by the reasoning in [YQJZ], let 2i − 1 (1 ≤ i ≤ k), be the smallest odd vertex (of rank

0) that is unoccupied. This means that the vertices labeled 1, 3, . . . , 2i − 3 are occupied. This

means that the vertices with even labels, 2, . . . , 2i − 2 are unoccupied, and since we are talking

about order ideals, everything ≥ the odd vertex 2i−1 and above the even vertices 2, . . . , 2i−2 gets

kicked out, and for this scenario, we are left with counting order ideals of a smaller lattice, with two

connected components, that consists of an even-labeled component, a triangle-lattice whose rank

zero level has size n, and whose labels are 2i, 2i+2, . . . , 2i+2n−2, and an odd-labeled component,

a triangle whose rank zero level has n− i vertices, and whose labels are 2i+ 1, 2i+ 3, . . . , 2n−1. In

addition we have the definitely occupied vertices 1, . . . , 2i−3, but since they are definitely occupied,

they don’t contribute anything to the count of order ideals.

See http://www.math.rutgers.edu/~zeilberg/tokhniot/PictArmin/O3.html, for the n = 6

7



case.

Let EO(a, b) be a two-triangle lattice, consisting of a triangle with a rank-zero vertices whose labels

are 2, . . . , 2a, and a triangle of length-side b (b > a) whose labels are 1, 3, . . . , 2b− 1. Going back to

the paragraph above, subtracting 2i−1 from all labels, gives us a lattice isomorphic to EO(n−i, n).

Let e(a, b) be the number of order ideals of the lattice EO(a, b) without consecutive labels. Then

we have

s(n) =

n+1∑
i=1

e(n− i, n) . (1)

For pictures of EO(i, 6) for 1 ≤ i < 6, see

http://www.math.rutgers.edu/~zeilberg/tokhniot/PictArmin/O4.html .

So if we would have an efficient ‘scheme’ to compute e(a, b), then we would be able to compute our

sequence-of-desire s(n).

For a ≤ b, let OE(a, b) be EO(b, a), and let o(a, b) be the number of order ideals without consecutive

labels of OE(a, b).

By looking at the smallest unoccupied odd-labeled vertex,2i− 1, say, we get, for a ≥ 1:

e(a, b) =

b+1∑
i=1

o(a+ 1− i, b− i) p(i− 2) , (2)

and for a ≤ 0, we have e(a, b) = p(b). Similarly, for a ≥ 1,

o(a, b) =

a+1∑
i=1

e(a− i, b+ 1− i) p(i− 2) , (3)

and for a ≤ 0, we have o(a, b) = p(b).

The scheme consisting of equations (0−3) enables a very fast computation of the sequence s(i), for,

say i ≤ 400, confirming, empirically for now, that s(i) = 4i. However this can be easily turned into

a fully rigorous proof. A holonomic description (see [Ze1], beautifully implemented by Christoph

Koutschan in [K]) of both e(a, b) and o(a, b) can be readily guessed, and then, along with p(k) =

Ck+1, the resulting identities (1) − (3) are routinely verifiable identities in the holonomic ansatz,

that can be plugged into Koutschan’s ‘holonomic calculator’. But since we know a priori that s(k)

satisfies some such recurrence, and it is extremely unlikely that its order is very high, confirming

it for the first 400 values consists a convincing semi-rigorous proof, that is easily regorizable (if

[stupidly!] desired).

Weight Enumerators

But our main goal is to have (2n+ 1, 2n+ 3)-analogs of the work in the article [Za] that dealt with

(n, n+1)-core partitions with distinct parts. In order to get data for the expectation, variance, and
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moments, we need an efficient way to generate as many terms of the sequence of Straub polynomials,

Sn(q), defined by

Sn(q) :=
∑
p

qsize(p) ,

where the sum ranges over all (2n+ 1, 2n+ 3)-core partitions with distinct parts, p, and size(p) is

the sum of the entries of p (i.e. the number of boxes in its Young Diagram).

The Maple package core.txt that accompanied [Za], and is also accompanying this article, uses

Dyck paths, and was able to find the first nine Straub polynomials, Sn(q), 1 ≤ n ≤ 9. It is based on

an extension of the method described in [EZ], but keeping track of the fact that cells with adjacent

labels are not allowed. So one has to put up with much more general families of paths, that are

also parametrized by a set of ‘forbidden labels’. This causes an exponential expansion of memory

and time.

The approach that we take in this article, that easily produced the first 21 Straub polynomials, is

a weighted analog of the above naive-enumeration scheme, and goes via order ideals.

For an order ideal of Pm,n let its weight be

qSumOfLabelstNumberOfV ertices .

Let Q(n) be the set of order ideals of P2n+1,2n+3 without neighboring labels (i.e. if a ∈ I then both

a− 1 and a+ 1 are not in I). Let’s define the two-variable polynomials

An(q, t) :=
∑

I∈Q(n)

qSumOfLabels(I)tNumberOfV ertices(I) .

Define the ‘umbra’ (linear functional on polynomials of t) by

U(tk) := q−k(k−1)/2 ,

and extended linearly. As shown by Anderson, once An(q, t) are known, we get Sn(q) by

Sn(q) = U(An(q, t)) ,

in other words, to get Sn(q) replace any power, tk, that appears in An(q, t), by q−k(k−1)/2.

It remains to find an efficient scheme for ‘cranking out’ as many terms of An(q, t) that our computer

would be willing to compute.

We first need a weighted analog of Equation (0), i.e. the weight-enumerator of Pk+1,k+2, but we

need the extra generality where (still with the smallest label being 1), for any positive integers c

and h, in the vertical direction it is going down by c, and in the horizontal direction it going down

by c+ h (drawing the lattice so that the highest label, 1 + (c+ h)(k − 1) is at the origin, and the
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vertex labeled 1 is situated at the point (k − 1, 0), and the vertex labeled 1 + (k − 1)h is situated

at the point (0, k − 1). Note that the original Pk+1,k+2 corresponds to c = k + 1 and h = 1.

Let’s call this generalized weight-enumerator P
(c,h)
k (q, t). It is readily seen that the weighted analog

of Eq. (0) is

P
(c,h)
k (q, t) =

k+1∑
i=1

ti−1 · q(i−1)+(i−1)(i−2)h/2 · P (c,h)
i−2 (q, qc+ht) · P (c,h)

k−i (q, qiht) , (0w)

with the initial conditions P−1 = 1, P0 = 1.

Let E
(c)
x,y(q, t) be the weight-enumerator of the lattice EO(x, y) with horizontal spacing c and vertical

spacing c+ 2. Then the analog of Eq. (1) is

An(q, t) =

n+1∑
i=1

ti−1q(i−1)
2

· E(2n+1)
n−i,n (q, q2i−1t) . (1w)

Let O
(c)
x,y(q, t) be the weight-enumerator of the lattice OE(x, y), with horizontal spacing c and

vertical spacing c+ 2. Then the analog of Eq. (2) can be seen to be

E(c)
x,y(q, t) =

y+1∑
i=1

ti−1 · q(i−1)
2

· O(c)
x−i+1,y−i(q, q

2i−1t) · P (c,2)
i−2 (q, qc+2t) , (2w)

with the initial condition E
(c)
x,y(q, t) = P

(c,2)
y (q, t) when x ≤ 0.

Finally, the weighted analog of Eq. (3) is

O(c)
x,y(q, t) =

x+1∑
i=1

ti−1 q(i−1)
2

· E(c)
x−i,y−i+1(q, q2i−1t) · P (c,2)

i−2 (q, qc+2t) , (3w)

with the initial condition O
(c)
x,y(q, t) = P

(c,2)
y (q, qt) when x ≤ 0.

The first 21 Straub polynomials

Using the above scheme, one gets that

S1(q) = q4 + q2 + q + 1 ,

S2(q) = q21 + q16 + 2 q12 + q9 + q8 + q7 + q6 + q5 + 2 q4 + 2 q3 + q2 + q + 1

S3(q) = q65 +q56 +q48 +q47 +q41 +q39 +q37 +2 q35 +q32 +q30 +2 q29 +q28 +q26 +3 q24 +q23 +q22

+q21 + q20 + 2 q19 + 2 q18 + 3 q17 + q16 + q15 + 2 q14 + 2 q13 + 2 q12 + 3 q11 + q10 + 3 q9 + 3 q8

+3 q7 + 4 q6 + 3 q5 + 2 q4 + 2 q3 + q2 + q + 1 ,
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S4(q) = q155+q141+q128+q125+q116+q112+2 q105+q103+q100+2 q95+q93+q91+2 q89+q85+q84

+q83 + 2 q82 + q80 + q79 + q78 + q76 + q74 + q73 + q72 + 2 q71 + 2 q70 + q69 + 2 q68 + q67 + q65 + q64

+q63 + 5 q61 + q60 + 2 q59 + 3 q57 + q56 + 3 q55 + 4 q53 + 2 q52 + 2 q51 + 2 q50 + q49 + 2 q48 + 3 q47

+2 q46 + 3 q45 + 4 q44 + 2 q43 + q42 + 5 q40 + 3 q39 + 4 q38 + 5 q37 + 2 q36 + 3 q35 + q34 + 4 q33

+6 q32 + 5 q31 + 3 q30 + 4 q29 + 3 q28 + 5 q27 + 4 q26 + 7 q25 + 5 q24 + 6 q23 + 3 q22 + 4 q21 + 5 q20

+5 q19 + 4 q18 + 5 q17 + 6 q16 + 5 q15 + 4 q14 + 7 q13 + 6 q12 + 7 q11 + 7 q10 + 6 q9 + 6 q8 + 5 q7

+4 q6 + 3 q5 + 2 q4 + 2 q3 + q2 + q + 1 .

For the Straub polynomials Sn(q) for 5 ≤ n ≤ 21, see the webpage

http://www.math.rutgers.edu/~zeilberg/tokhniot/oArmin3.txt , or use procedure ASpc(n,q)

in the Maple package Armin.txt mentioned above.

Empirical (yet rigorizable) Explicit Expressions for the Expectation, Variance, and

Higher Moments

Unlike the case of (s, s + 1)-core partitions, whose number happened to be Fs+1, and the explicit

expressions for the expectation, variance, and higher moments involved expressions in Fs, Fs+1 and

s, the present case of (2n+ 1, 2n+ 3)-core partitions into distinct parts, gives, surprisingly, ‘nicer’

results. This is because, as conjectured in [Str] and first proved in [YQLZ] (and reproved above),

the actual enumeration is as simple as can be, namely 4n. Hence it is not surprising that the

expectation, variance, and higher moments are polynomials in n.

To get expressions for the moments we used the empirical-yet-rigorizable approach of [Ze2] and

[Ze3], as follows.

Using the first 21 Straub polynomials, we get the sequence of numerical averages S′n(1)/4n, 1 ≤
n ≤ 21, and ‘fit it’ to a polynomial of degree 3 (in fact four terms suffice!), we get the expression

for the expectation, let’s call it µ(n), stated in Theorem 1 above.

Using the sequence
(s d

ds )2Sn(q)|q=1

4n
− µ(n)2 ,

for 1 ≤ n ≤ 7, and ‘fitting’ it with a polynomial of degree 6, we get an explicit expression for the

variance, thereby getting Theorem 2. The conjectured polynomial expression agrees all the way to

n = 21.

The third-through the seventh moments are derived similarly, where the i-th moment (about the

mean, but also the straight moment) turns out to be a polynomial of degree 3i in n.

Let us comment that all the results here can be, a posteriori, justified rigorously. The complicated

functional recurrences for the Straub polynomials (before the “umbral application”) entail, after
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Taylor expansions about q = 1, extremely complicated recurrence relations for the (pre-) moments,

whose details do not concern us, since we know that their truth follows by induction. Each such

identity is a polynomial identity, and hence its truth follows from plugging-in sufficiently many

special cases. But that’s how we got them in the first place. QED!

Encore: A one-line proof of Straub’s Ex-Conjecture about the Maximal Size of a

(2n+ 1, 2n+ 3) core partition into distinct parts

In [YQLZ], the authors used quite a bit of human ingenuity to prove Armin Straub’s conjecture

(posed in [Str]) that the maximal size of a (2n+ 1, 2n+ 3)-core partition into distinct parts is given

by the degree-4 polynomial 1
24 (5n+ 11)n (n+ 2) (n+ 1).

But since it is clear, from general, a priori, hand-waving (yet fully rigorous) considerations that

this quantity is some polynomial of degree ≤ 5, it is enough to check it for 1 ≤ n ≤ 6. But this

quantity is exactly the degree of the Straub polynomial Sn(q). We verified it, in fact, all the way

to n = 21, so Theorem 0′ is re-proved (with a vengeance!).
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