An Irrationality measure of $\arctan (1 / p)$

Doron ZEILBERGER and Wadim ZUDILIN

Abstract. We establish an irrationality measur for $\arctan \left(\frac{1}{p}\right)$ for any odd prime p.
The Maple package. This article is accompanied by a shoft Maple package

- ArcTan.txt ;

It is available, along with an input and output file, from the front of this article
http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/arctan.html
Let p be an odd prime. Consider the following integral

$$
E_{n}(p)=\int_{0}^{1} \frac{x^{n}(1-x)^{n}}{\left(1+\frac{x^{2}}{p^{2}}\right)^{n+1}} d x
$$

Fact 1: There exists a constant C_{1} such that

$$
\left|E_{n}(p)\right| \leq \frac{C}{a_{1}(p)^{n}}
$$

where

$$
a_{1}(p)=2 \frac{1}{\left(-p+\sqrt{1+p^{2}}\right) p}
$$

Proof: Differentiating $f(x)=\frac{x(1-x)}{1+\frac{x^{2}}{p^{2}}}$ with respect to x and setting it equal to 0 gets that the maximum is at $x=\left(-p+\sqrt{1+p^{2}}\right) p$. Plugging it into $f(x)$ gives $1 / a_{1}(p)$.

Fact 2: $E_{n}(p)$ satisfies the linear recurrence equation

$$
(4 n+8) E_{n+2}(p)-2 p^{2}(2 n+3) E_{n+1}(p)-(n+1) p^{2} E_{n}(p)=0 .
$$

Proof: Follows from the Almkvist-Zeilberger algorithm [AZ].
Fact 3: There exist rational numbers $A_{n}(p)$ and $B_{n}(p)$ such that

$$
E_{n}(f)=-A_{n}+B_{n} \arctan \left(\frac{1}{p}\right) .
$$

Proof: Either by integration by parts, or using Fact 2, once it is verified for $n=0$ and $n=1$.

Fact 4: The sequence of rational numbers $A_{n}(p), B_{n}(p)$ satisfy the same recurrence as of $E_{n}(p)$, namely

$$
\begin{aligned}
& (4 n+8) A_{n+2}(p)+2 p^{2}(2 n+3) A_{n+1}(p)-(n+1) p^{2} A_{n}(p)=0 \\
& (4 n+8) B_{n+2}(p)+2 p^{2}(2 n+3) B_{n+1}(p)-(n+1) p^{2} B_{n}(p)=0 .
\end{aligned}
$$

Proof: Use fact 3 , comparing the coefficients of 1 and $\arctan \left(\frac{1}{p}\right)$.
Fact 5: There exist constants C_{2}, C_{3} such that

$$
A_{n}(p) \leq C_{2} a_{2}(p)^{n} \quad, \quad B_{n}(p) \leq C_{3} a_{2}(p)^{n},
$$

where

$$
a_{2}(p)=\frac{1}{2}\left(p+\sqrt{1+p^{2}}\right) p
$$

Proof: From Fact 4 and the Poincaré Lemma.
Fact 6: There exists a constant C_{4} such that

$$
\left|\arctan \left(\frac{1}{p}\right)-\frac{A_{n}(p)}{B_{n}(p)}\right| \leq \frac{C_{4}}{\left(a_{1}(p) a_{2}(p)\right)^{n}} .
$$

Proof: Divide Fact 3 by B_{n} and use Facts 1 and 5 .
Surprising Fact 7: Let $d(n):=\operatorname{lcm}(1 \ldots n)$. Then

$$
\bar{A}_{n}(p)=A_{n}(p) d(n) 2^{[3 n / 2]} / p^{n} \quad, \quad \bar{B}_{n}(p)=B_{n}(p) d(n) 2^{[3 n / 2]} / p^{n}
$$

are integers.
Proof: Checked empirically for many p and many n. Formal proof coming up.
Fact 8:

$$
\bar{B}_{n}(p)=O\left(\left(2^{3 / 2} a_{2}(p) / p\right)^{n} d(n)\right)
$$

Proof: From Fact 5 and the definition of $\bar{B}_{n}(p)$.
From Fact 6 we have
Fact 9

$$
\left|\arctan \left(\frac{1}{p}\right)-\frac{\bar{A}_{n}}{\bar{B}_{n}}\right| \leq \frac{C_{4}}{\left(a_{1}(p) a_{2}(p)\right)^{n}}=\frac{C_{5}}{\left(\bar{B}_{n}(p)\right)^{1+\delta}} \quad, \quad,
$$

where $\left(\right.$ since $\left.d(n)=O\left(e^{n}\right)\right)$,

$$
1+\delta=\frac{\log \left(a_{1}(p)\right)+\log \left(a_{2}(p)\right)}{\frac{3}{2} \log 2+\log \left(a_{2}(p)\right)-\log (p)+1}
$$

As usual (see [vdP]), the irrationality measure is $1+1 / \delta$, hence, we have established
Theorem: If p is an odd prime, then $\arctan \left(\frac{1}{p}\right)$ has irrationality measure
$-2\left(\ln \left(2 \frac{p+\sqrt{1+p^{2}}}{p}\right)+\ln \left(1 / 2\left(p+\sqrt{1+p^{2}}\right) p\right)\right)\left(-2 \ln \left(2 \frac{p+\sqrt{1+p^{2}}}{p}\right)+3 \ln (2)+2-2 \ln (p)\right)^{-1}$

Here are a few sample values
$p=3: 7.707357546 \quad, \quad p=5: 4.788327432 \quad, \quad p=7: 4.075567842 \quad, \quad p=11: 3.542000040$,
$p=1009: 2.429989300, \quad p=1000000007: 2.134188776 \quad, \quad p=100000000000000000039: 2.059322676$.

References

[AZ] Gert Almkvist and Doron Zeilberger, The Method of differentiating Under The integral sign, J. Symbolic Computation 10 (1990), 571-591. Available from
http://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/duis.html
[PWZ] Marko Petkovsek, Herbert S. Wilf, and Doron Zeilberger, " $A=B$ ", A.K. Peters, 1996. Freely available from https://www.math.upenn.edu/~wilf/AeqB.html
[vdP] Alfred van der Poorten, A Proof that Euler missed, Math. Intell. 1(1979), 195-203.

Wadim Zudilin, Institute for Mathematics, Astrophysics and Particle Physics Radboud Universiteit, PO Box 90106500 GL Nijmegen, The Netherlands Email: wzudilin [at] gmail [dot] com .

Doron Zeilberger, Department of Mathematics, Rutgers University (New Brunswick), Hill CenterBusch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA.
Email: DoronZeil [at] gmail [dot] com

Written: Oct. 8, 2019.

