An Irrationality measure of $\arctan(1/p)$

Doron ZEILBERGER and Wadim ZUDILIN

Abstract. We establish an irrationality measur for $\arctan(\frac{1}{p})$ for any odd prime p.

The Maple package. This article is accompanied by a shoft Maple package

• ArcTan.txt

;

It is available, along with an input and output file, from the front of this article http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/arctan.html Let p be an odd prime. Consider the following integral

$$E_n(p) = \int_0^1 \frac{x^n (1-x)^n}{(1+\frac{x^2}{p^2})^{n+1}} dx$$

Fact 1: There exists a constant C_1 such that

$$|E_n(p)| \le \frac{C}{a_1(p)^n} \quad ,$$

where

$$a_1(p) = 2 \frac{1}{\left(-p + \sqrt{1+p^2}\right)p}$$

Proof: Differentiating $f(x) = \frac{x(1-x)}{1+\frac{x^2}{p^2}}$ with respect to x and setting it equal to 0 gets that the maximum is at $x = \left(-p + \sqrt{1+p^2}\right)p$. Plugging it into f(x) gives $1/a_1(p)$.

Fact 2: $E_n(p)$ satisfies the linear recurrence equation

$$(4n+8)E_{n+2}(p) - 2p^2(2n+3)E_{n+1}(p) - (n+1)p^2E_n(p) = 0$$

Proof: Follows from the Almkvist-Zeilberger algorithm [AZ].

Fact 3: There exist rational numbers $A_n(p)$ and $B_n(p)$ such that

$$E_n(f) = -A_n + B_n \arctan(\frac{1}{p}) \quad .$$

Proof: Either by integration by parts, or using Fact 2, once it is verified for n = 0 and n = 1.

Fact 4: The sequence of rational numbers $A_n(p)$, $B_n(p)$ satisfy the same recurrence as of $E_n(p)$, namely

$$(4n+8)A_{n+2}(p) + 2p^2(2n+3)A_{n+1}(p) - (n+1)p^2A_n(p) = 0 ,$$

$$(4n+8)B_{n+2}(p) + 2p^2(2n+3)B_{n+1}(p) - (n+1)p^2B_n(p) = 0 .$$

Proof: Use fact 3, comparing the coefficients of 1 and $\arctan(\frac{1}{p})$.

Fact 5: There exist constants C_2 , C_3 such that

$$A_n(p) \le C_2 a_2(p)^n$$
 , $B_n(p) \le C_3 a_2(p)^n$

,

•

where

$$a_2(p) = \frac{1}{2} \left(p + \sqrt{1+p^2} \right) p$$

Proof: From Fact 4 and the Poincaré Lemma.

Fact 6: There exists a constant C_4 such that

$$|\arctan(\frac{1}{p}) - \frac{A_n(p)}{B_n(p)}| \le \frac{C_4}{(a_1(p) a_2(p))^n}$$

Proof: Divide Fact 3 by B_n and use Facts 1 and 5.

Surprising Fact 7: Let d(n) := lcm(1...n). Then

$$\bar{A}_n(p) = A_n(p) d(n) 2^{[3n/2]} / p^n \quad , \quad \bar{B}_n(p) = B_n(p) d(n) 2^{[3n/2]} / p^n$$

are integers.

Proof: Checked empirically for many p and many n. Formal proof coming up.

Fact 8:

$$\bar{B}_n(p) = O((2^{3/2} a_2(p)/p)^n d(n)) ,$$

Proof: From Fact 5 and the definition of $\overline{B}_n(p)$.

From Fact 6 we have

Fact 9

$$|\arctan(\frac{1}{p}) - \frac{\bar{A}_n}{\bar{B}_n}| \le \frac{C_4}{(a_1(p)a_2(p))^n} = \frac{C_5}{(\bar{B}_n(p))^{1+\delta}} , ,$$

where (since $d(n) = O(e^n)$),

$$1 + \delta = \frac{\log(a_1(p)) + \log(a_2(p))}{\frac{3}{2}\log 2 + \log(a_2(p)) - \log(p) + 1}$$

As usual (see [vdP]), the irrationality measure is $1 + 1/\delta$, hence, we have established

Theorem: If p is an odd prime, then $\arctan(\frac{1}{p})$ has irrationality measure

$$-2\left(\ln\left(2\frac{p+\sqrt{1+p^2}}{p}\right) + \ln\left(1/2\left(p+\sqrt{1+p^2}\right)p\right)\right)\left(-2\ln\left(2\frac{p+\sqrt{1+p^2}}{p}\right) + 3\ln(2) + 2 - 2\ln(p)\right)^{-1}$$

Here are a few sample values

 $p=3:7.707357546 \quad , \quad p=5:4.788327432 \quad , \quad p=7:4.075567842 \quad , \quad p=11:3.542000040 \quad ,$

 $p = 1009: 2.429989300 \quad , \quad p = 1000000007: 2.134188776 \quad , \quad p = 100000000000000000039: 2.059322676 \quad . \\$

References

[AZ] Gert Almkvist and Doron Zeilberger, The Method of differentiating Under The integral sign,
J. Symbolic Computation 10 (1990), 571-591. Available from
http://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/duis.html .

[PWZ] Marko Petkovsek, Herbert S. Wilf, and Doron Zeilberger, "A=B", A.K. Peters, 1996. Freely available from https://www.math.upenn.edu/~wilf/AeqB.html .

[vdP] Alfred van der Poorten, A Proof that Euler missed, Math. Intell. 1(1979), 195-203.

Wadim Zudilin, Institute for Mathematics, Astrophysics and Particle Physics Radboud Universiteit, PO Box 9010 6500 GL Nijmegen, The Netherlands Email: wzudilin [at] gmail [dot] com .

Doron Zeilberger, Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA. Email: DoronZeil [at] gmail [dot] com .

Written: Oct. 8, 2019.