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Explicit Formulas vs. Algorithms

In the old days, when one had to find some sequence, a(n), there were two extremes. In the lucky
case, one had an explicit formula. For example, the probability of tossing a fair coin 2n times and
getting exactly n Heads, equals (2n)!/(22nn!2). Sometimes, cheatingly, one considered as ‘explicit’
expressions in terms of sums (or multisums) or integrals (or multi-integrals). The other extreme
was to just have a numerical algorithm, that for each (numeric!) input n, found the output. In
that case the algorithm was rated by its efficiency.

Another compromise was an asymptotic formula, valid (approximately!) for large n.

But what’s a formula?, it is a kind of algorithm. Of course, it is more than that, theoretically, but
from a practical point of view it should be judged by the efficiency of the implied algorithm.

The Holonomic Ansatz

Let’s look at the explicit formulas that are called ‘closed-form’, or more precisely hypergeometric
sequences. A sequence a(n) is called hypergeometric if the ratio a(n+1)/a(n) is a rational function
of n, i.e. a quotient P (n)/Q(n) where P (n) and Q(n) are polynomials. For example for the
above-mentioned probability of getting exactly n Heads when tossing a fair coin 2n times, p(n) :=
(2n)!/(22nn!2), we have p(n+ 1)/p(n) = (2n+ 1)/(2(n+ 1)), or, by cross-multiplying

2(n+ 1)p(n+ 1)− (2n+ 1)p(n) = 0 .

This is an example of a first-order linear recurrence equation with polynomial coefficients.
Once you have the trivial value p(0) = 1 you can use it to compile a table of p(n) for n < N , for
any desired N in O(N) operations.

The same is true for solutions of any linear recurrence equation with polynomial coefficients,

L∑
i=0

ai(n)p(n+ i) = 0 ,

of order L. The only difference is that we need L initial conditions, p(0), p(1), . . . , p(L − 1). We
also assume that aL(n) = 0 has no positive integer roots.

1 Oct. 18, 2006. Accompanied by Maple packages AppsWZ and AppsWZmulti downloadable from Zeilberger’s website.

Sample input and output can be viewed in:

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/ appswz.html . The research of the second au-

thor was supported in part by the NSF.
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Such sequences were dubbed P-recursive by Richard Stanley in his seminal paper [St], but we
prefer the name holonomic. Zeilberger[Z] famously showed that many sequences that arise in
combinatorics, probability, and elsewhere are holonomic, and this was made into a full-fledged
algorithmic theory by Wilf and Zeilberger [WilZ].

In our humble opinion, a holonomic representation of a sequence is to be considered explicit, since it
is almost as good as a closed-form (i.e. hypergeometric). In the previous literature on WZ theory,
there were few scattered examples of potential applications, but the focus was on the theory and
the algorithms, not on specific applications.

Why this Paper?

The purpose of this paper is to fill this gap. We only list five such applications, but the reader can
doubtless find many others. It is hoped that our implementation of these five applications will aid
the reader to implement other ones that he or she might be interested in.

The Maple packages AppsWZ and AppsWZmulti

This article is accompanied by two Maple packages. AppsWZ that does applications of the single-
variable case ([AlZ]), and AppsWZmulti that does applications of the multi-variable case ([WilZ],[ApZ]).

Asymptotics

Another nice feature of being a solution of a linear recurrence equation with polynomial coefficients
is that using the Birkhoff-Trijinski method (see [WimZ] for a lucid exposition), one can deduce the
asymptotics to any desired order. This algorithm has been implemented by us in Maple, and is
part of both packages.

First Application: Rolling a Die

If instead of tossing a coin n times, you roll a k-faced die, marked with positive or negative numbers,
and you win the amount shown on the landed face (or lose, if it is a negative number). What is the
probability that after n rolls, you break even? More generally, how likely are you to win exactly d
dollars?

If the ith face (i = 1 . . . k) shows the amount mi, and lands with probability pi, let the probability
generating function of the die be defined by

P (x) :=
k∑
i=1

pix
mi .

It is very well known (and very very easy to see), that the probability, let’s call it ad(n), of winding
up with d dollars after n rolls is the constant term of

P (x)n

xd
.
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But that’s exactly grist for the Almkvist-Zeilberger mill! In the package AppsWZ this is accom-
panied by the commands RecProbVisit and RecProbVisitE.

For example, let a(n) be the probability of rolling a fair (standard) die 2n times and having the
total score being exactly the expected value 7n. Then a(n) satisfies the following third-order linear
recurrence equation with polynomial coefficients

−4(5 + 2n)(2n+ 3)(2n+ 1)(7n+ 19)(5n+ 11)(7n+ 20)(7n+ 13)(n+ 2)(n+ 1)a(n)

+4(7n+20)(5+2n)(2n+3)(n+2)(25480n5+223496n4+755066n3+1223233n2+946889n+279936)a(n+1)−

(5n+ 6)(5 + 2n)(6 + 7n)(499359n6 + 6777015n5 + 38079431n4

+113390385n3 + 188723986n2 + 166469280n+ 60800544)a(n+ 2)+

30(5n+ 14)(5n+ 13)(5n+ 12)(7n+ 12)(5n+ 11)(5n+ 6)(7n+ 13)(6 + 7n)(n+ 3)a(n+ 3) = 0 ,

and the Birkhoff-Trijinksi method implies that the asymptotics is:

(.197833497170804)n−1/2(1−(111/1400)/n−(12037/5488000)/n2+(1367631/1097600000)/n3+. . .) .

Readers can produce their own output for the scenario of their choice.

Second Application: How many ways to have r people chip in to pay a bill of n cents

In George Pólya’s classic ‘picture writing’ paper[Po], he considers the problem of figuring out how
many ways can one person pay a bill of n cents using any number of coins. If the denominations
are {d1, . . . , dk} ({1, 5, 10, 25, 50, 100} in the US), then the required number is the coefficient of xn

in the generating function
k∏
i=1

1
1− xdi

.

Calling this number a(n), this entails, trivially, a linear recurrence equation with constant coeffi-
cients of order

∑k
i=1 di. But by allowing polynomial coefficients, one can get, thanks to Almkvist-

Zeilberger, a recurrence of order ≤ lcm(d1, . . . , dk).

More generally, of ar(n) is the number of ways of breaking n cents with (up to) r people participating
(or equivalently, one person with r pockets in his or her pants or dress), the generating function is

k∏
i=1

1
(1− xdi)r

,

and applying Almkvist-Zeilberger to

1
xn+1

k∏
i=1

1
(1− xdi)r

,
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produces a linear recurrence, still with polynomial coefficients (but now these are polynomials in
both n and r) of the above order. On the other hand if you stick to constant coefficients then
the order would be r(

∑k
i=1 di), and would only make sense for (small!) numeric r, while within

the holonomic ansatz, one can have symbolic r without any increase in the order. The procedure
that takes care of this problem in the Maple package AppsWZ is TeamEffortMoneyChanging. For
example, entering:

TeamEffortMoneyChanging({1,5,10,25},n,N,r);

would tell you that if ar(n) is the number of ways of breaking n cents with (up to) r people
chipping-in, using only pennies, nickels, dimes, and quarters, and denoting by N the shift operator
in n: (Nx(n) := x(n+ 1)), it turns out that ar(n) is annihilated by the following 30th-order linear
recurrence operator with polynomial coefficients:

(−41r − n) + (−r)N + (−r)N2 + (−r)N3 + (−r)N4+

(−47r − n− 5)N5 + (−2r)N6 + (−2r)N7 + (−2r)N8 + (−2r)N9 + (−22r)N10

+(−2r)N11 + (−2r)N12 + (−2r)N13 + (−2r)N14

+(−22r)N15 + (−2r)N16 + (−2r)N17 + (−2r)N18 + (−2r)N19 + (−22r)N20+

(−2r)N21 + (−2r)N22 + (−2r)N23 + (−2r)N24 + (−6r + n+ 25)N25

+(−r)N26 + (−r)N27 + (−r)N28 + (−r)N29 + (n+ 30)N30 .

Third Application: Hidden Markov Models

In contemporary bioinformatics (see for example the fascinating and lucid expository article by
Lior Pachter and Bernd Sturmfels in the wonderful book that they edited([PaStu]), one has to
estimate probabilities from output. The usual approach is maximum likelihood, that entails solving
huge systems of polynomial equations that are handled via Buchberger’s Gröbner Basis Algorithm.
But, following Laplace, we can also use a Bayesian approach and get quotients of integrals. These
integrals can be handled via the multi-Almkvist-Zeilberger ([ApZ]) algorithm. For any specific
instance one may want to use numerical integration. If one wants to compile a table anticipating
all possible outputs (of course up to a certain length), then the recurrences supplied by Almkvist-
Zeilberger are much more efficient.

Let’s illustrate it with the simple case of (only) two dice, that enables us to stay within the single-
variable Almkvist-Zeilberger ([AlZ]).

In the proverbial dishonest casino, suppose that there are two kinds of (identically looking) dice,
with the same possible outcomes (faces), let’s call them {1, . . . ,m}, each with a known probability
distribution (p1, . . . , pm) and (q1, . . . , qm). What is unknown is the probability, x, of using the first
die (and hence 1 − x for the other die). Judging from the sequence of outcomes (or rather by the
relative frequencies of the landed faces), one has to estimate x. If the (hidden) probability of using
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the first die was x, (whatever it is), then the probability of the output distribution being a1, . . . , am
is (a1 + . . .+ am)!/(a1! · · · am!) times

L(x) :=
m∏
i=1

(xpi + (1− x)qi)ai .

The maximum-likelihood estimate is to maximize L(x) by solving L′(x) = 0 (with more dice one
gets partial derivatives and systems of equations in several variables). But, following the more
democratic approach of Laplace, that considers all scenarios (and that famously tells you that if so
far you succeeded m times and failed n times, then your estimated probability of success in your
next try is not m/(m+n) but rather (m+1)/(m+n+2)), we would have not the root of L′(x) = 0
but rather ∫ 1

0
x
∏m
i=1(xpi + (1− x)qi)ai dx∫ 1

0

∏m
i=1(xpi + (1− x)qi)ai dx

.

Calling the top quantity T (a1, . . . , am) and the bottom quantityB(a1, . . . , am), we see that Almkvist-
Zeilberger can manufacture pure linear recurrences (with polynomial coefficients) in each of the
discrete variables a1, . . . , am (in Nature m = 4, or m = 20). The multi-dice analog of this (which
would employ the multi-variable Almkvist-Zeilberger , done in [ApZ]) may be of interest to bioin-
formaticians. So far we have only implemented the interface in the two-dice case.

The procedure that takes care of this problem in AppsWZ is ExpProbFirstDie(Lp1,Lp2,a0), where
Lp1, and LP2 are the probability distributions and a0 is the list of respective outcome. The novelty
here is that both top and bottom integrals are not computed directly but via the recurrences
outputted by Almkvist-Zeilberger. With the option remember it should be much more efficient if
one wants to pre-compute a table of estimated probability for each a0 of size less than some (lagre)
pre-assigned value.

For example, if there are two coins, one fair and one loaded with probability of a Head being 1/3,
and the outcome was 10 and 10 (which ML would say that the fair coin was used all the time),

evalf(ExpProbFirstDie([1/2,1/2],[1/3,2/3],[10,10])):

would estimate that the fair coin was used only %58.76 of the time.

Fourth Application: Lattice Paths Counting

We all know that the number of ways of walking from the origin (0, 0) to the point (m,n) in the
square lattice, with unit northbound and unit eastbound steps {(0, 1), (1, 0)} is

F (m,n) =
(m+ n)!
m!n!

.

This immediately implies (and is equivalent to) the fact that

F (m+ 1, n)
F (m,n)

=
m+ n+ 1
m+ 1

,
F (m,n+ 1)
F (m,n)

=
m+ n+ 1
n+ 1

.
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and cross-multiplying yields

(m+ 1)F (m+ 1, n)− (m+n+ 1)F (m,n) = 0 , (n+ 1)F (m,n+ 1)− (m+n+ 1)F (m,n) = 0 .

In other words the discrete function F (m,n) satisfies pure linear recurrences equations with poly-
nomial coefficients, that happen, in this simple case, to be first-order. Recall that a recurrence
is pure if only one of the variables changes at a time. For example, F (m,n) trivially satisfies the
“mixed” (partial) recurrence F (m,n) = F (m− 1, n) + F (m,n− 1).

An amazing consequence of Wilf-Zeilberger theory ([WilZ]) is that this is still true for an arbitrary
set of (positive) steps, and in arbitrary dimension. Of course the pure recurrences are no longer
(usually) first-order, but as above, this is a minor computational disadvantage.

Indeed, if we are walking in the d-dimensional (hyper)cubic lattice, starting at the origin, and with
a set of steps S (all with non-negative coordinates, excluding the step 0 [staying in place]), the
generating function is trivially seen to be∑

m

F (m1, . . . ,md)x1
m1 · · ·xdmd

=
1(

1−
∑

(s1,...,sd)∈Sx1
s1 · · ·xdsd

) .

So it follows that our discrete function of interest, F (m1, . . . ,md) equals the formal residue of

x−m1−1
1 · · ·x−md−1

d(
1−

∑
(s1,...,sd)∈Sx1

s1 · · ·xdsd
) .

If you are only interested in getting to points on the diagonal, then f(n) := F (n, n, . . . , n) is given
by the formal residue of

x−n−1
1 · · ·x−n−1

d(
1−

∑
(s1,...,sd)∈Sx1

s1 · · ·xdsd
) ,

and once again thanks to Wilf-Zeilberger theory, satisfies a linear recurrence equation with poly-
nomial coefficients.

This is implemented in the second Maple package accompanying this paper, AppsWZmulti that is
“powered” by the Maple package MultiAlmkvistZeilberger that accompanied [ApZ]. The relevant
procedures (in AppsWZmulti) are LatticePaths and LatticePathsDiagonal and for the verbose
versions LatticePathsStory and LatticePathsDiagonalStory.

For example, if you type LatticePaths({[0,1],[1,0],[1,1]},m,M); you would get that the
following two operators annihilate F (m1,m2), the number of ways of going from (0, 0) to (m1,m2)
using the steps {(0, 1), (1, 0), (1, 1)} (where M1,M2 are the shift operators in the m1,m2 variables
respectively)

[−(m1+1)/(2+m1)−((1+2m2)/(2+m1))M1+M2
1 ,−(m2+1)/(2+m2)−((1+2m1)/(2+m2))M2+M2

2 ] ,
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which in everyday parlance means that F (m1,m2) satisfies

(m1 + 2)F (m1 + 2,m2)− (2m2 + 1)F (m1 + 1,m2)− (m1 + 1)F (m1,m2) = 0 ,

(m2 + 2)F (m1,m2 + 2)− (2m1 + 1)F (m1,m2 + 1)− (m2 + 1)F (m1,m2) = 0 .

If you type LatticePathsDiagonal({[0,1],[1,0],[1,1]},n,N); you would get that f(n), the
number of ways of getting from (0, 0) to (n, n) using the same set of steps is:

(n+ 2)f(n+ 2)− 3(2n+ 3)f(n+ 1) + (n+ 1)f(n) = 0 ,

subject to the initial conditions f(0) = 1,f(1) = 3. Thanks to Birkhoff-Trijinski, its asymptotics is

C(3+23/2)nn−1/2(1+((3/32)21/2−1/4)/n+(113/1024−(9/128)21/2)/n2+((1545/32768)21/2−245/4096)/n3) ,

for some constant C.

A more interesting example are the (old-time) basketball numbers, which is the number of ways
a basketball game that ended with the score n : n can proceed. Recall that in the old days (before
1961), an atom of basketball-scoring could be only of one or two points. Equivalently, this number
is the number of ways of walking, in the square lattice, from (0, 0) to (n, n) using the atomic steps
{(1, 0), (2, 0), (0, 1), (0, 2)}. Entering this into LatticePathsDiagonalStory yields that, calling this
number F (n), it satisfies the third-order linear recurrence:

(16/5)(2n+ 3)(11n+ 26)(1 + n)/((n+ 3)(2 + n)(11n+ 15))F (n)

−(4/5)(121n3 + 649n2 + 1135n+ 646)/((n+ 3)(2 + n)(11n+ 15))F (1 + n)

−(2/5)(176n2 + 680n+ 605)/((11n+ 15)(n+ 3))F (2 + n) + F (n+ 3) = 0 ,

subject to the initial conditions:

F (0) = 1, F (1) = 2, F (2) = 14 .

For the record, the first few terms are:

[1, 2, 14, 84, 556, 3736, 25612, 177688, 1244398, 8777612, 62271384, 443847648, 3175924636,
22799963576, 164142004184, 1184574592592, 8567000931404, 62073936511496, 450518481039956,
3274628801768744, 23833760489660324].

The asymptotics is:

(.37305616)(4 + 2(31/2))nn−1/2(1 + (67/1452)31/2 − (119/484))/n

+((6253/117128)−(7163/234256)31/2)/n2 +(−(32645/15460896)31/2 +(129625/10307264))/n3) ,

or in floating-point:
(.37305616)(7.464101616)nn−1/2·

(1.− .1659453140/n+ .42398086 · 10−3/n2 + .8918933381 · 10−2/n3) .
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Fifth Application: Random Walk in Higher Dimensions

This is the multivariate analog of the First Application. The relevant procedures in AppsWZmulti

are RandomWalkRecurrence and RandomWalkRecurrenceE. By now readers should be able to gen-
erate their own examples. A few sample input and output files are given in the webpage of this
article.
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