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Abstract. In a recent beautiful but technical article, William Y.C. Chen, Qing-Hu Hou, and Doron
Zeilberger developed an algorithm for finding and proving congruence identities (modulo primes)
of indefinite sums of many combinatorial sequences, namely those (like the Catalan and Motzkin
sequences) that are expressible in terms of constant terms of powers of Laurent polynomials. We
first give a leisurely exposition of their elementary but brilliant approach, and then extend it in
two directions. The Laurent polynomials may be of several variables, and instead of single sums
we have multiple sums. In fact we even combine these two generalizations!

Introduction

In a recent elegant article ([CHZ]) the following type of quantities were considered

(
rp−1∑
k=0

a(k)

)
mod p ,

where

• a(k) is a combinatorial sequence, expressible as the constant term of a power of a Laurent
polynomial of a single variable (for example, the central binomial coefficient

(
2k
k

)
is the coefficient

of x0 in (x+ 1
x )2k) .

• r is a specific positive integer .

• p is an arbitrary prime .

Let x ≡p y mean x ≡ y (mod p), in other words, that x− y is divisible by p.

The [CHZ] method, while ingenious, is very elementary! The main “trick” is:

The Freshman’s Dream Identity ([Wi]): (a+ b)p ≡p a
p + bp .

Recall that the easy proof follows from the Binomial Theorem, and noting that
(

p
k

)
is divisible by

p except when k = 0 and k = p. This also leads to one of the many proofs of the grandmother
of all congruences, Fermat’s Little Theorem, ap ≡p a, by starting with 0p ≡p 0, and applying
induction to (a+ 1)p ≡p a

p + 1p.

The second ingredient in the [CHZ] method is even more elementary! It is:

Sum of a Geometric Series:
n−1∑
i=0

zi =
zn − 1
z − 1

.
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The focus in the Chen-Hou-Zeilberger ([CHZ]) paper was both computer-algebra implementation,
and proving a general theorem about a wide class of sums. Their paper is rather technical, and
hence its beauty is lost to a wider audience. Hence the first purpose of the present article is to give
a leisurely introduction to their method, and illustrate it with numerous illuminating examples.
The second, main, purpose, however, is to extend the method in two directions. The summand
a(k), may be the constant term of a Laurent polynomial of several variables, and instead of a
single summation sign, we can have multi-sums. In fact we can combine these two!

Notation

The constant term of a Laurent polynomial P (x1, x2, . . . , xn), alias the coefficient of x0
1x

0
2..x

0
n, is

denoted by CT [P (x1, x2, . . . , xn)]. The general coefficient of xm1
1 xm2

2 ..xmn
n in P (x1, x2, . . . , xn) is

denoted by COEFF[x
m1
1 x

m2
2 ..xmn

n ]P (x1, x2, . . . , xn). For example,

CT

[
1
xy

+ 3 + 5xy − x3 + 6y2

]
= 3 , COEFF[xy]

[
1
xy

+ 3 + 5xy + x3 + 6y2

]
= 5.

We use the symmetric representation of integers in (−p/2, p/2] when reducing modulo a prime p.
For example, 6 mod 5 = 1 and 4 mod 5 = −1.

Review of the Chen-Hou-Zeilberger Single Variable Case

In order to motivate our generalization, we will first review, in more detail than given in [CHZ],
some of their elegant results. Let’s start with the Central Binomial Coefficients, sequence
A000984 in the great OEIS ([Sl], https://oeis.org/A000984).

Proposition 1. For any prime p ≥ 5

p−1∑
n=0

(
2n
n

)
≡p

{
1, if p ≡ 1 (mod 3) ;
−1, if p ≡ 2 (mod 3) .

Proof: Using the fact that (
2n
n

)
= CT

[
(1 + x)2n

xn

]
,

and the Freshman’s Dream identity, (a+ b)p ≡p a
p + bp, we have

p−1∑
n=0

(
2n
n

)
=

p−1∑
n=0

CT

[(
(1 + x)2n

xn

)]
=

p−1∑
n=0

CT

[(
2 + x+

1
x

)n]

= CT

[(
2 + x+ 1

x

)p − 1
2 + x+ 1

x − 1

]
≡p CT

[
2p + xp + 1

xp − 1
1 + x+ 1

x

]
(By Freshman’s Dream)

≡p CT

[
2 + xp + 1

xp − 1
1 + x+ 1

x

]
(By Fermat’s little theorem)
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= CT

[
1 + xp + 1

xp

1 + x+ 1
x

]
= CT

[
1 + xp + x2p

(1 + x+ x2)xp−1

]
= COEFF[xp−1]

[
1

1 + x+ x2

]

= COEFF[xp−1]

[
1− x

1− x3

]
= COEFF[xp]

( ∞∑
i=0

x3i+1

)
+ COEFF[xp]

( ∞∑
i=0

(−1) · x3i+2

)
.

The result follows from extracting the coefficient of xp in the above geometrical series.

Proposition 1’
2p−1∑
n=0

(
2n
n

)
≡p

{
3, if p ≡ 1 (mod 3) ;
−3, if p ≡ 2 (mod 3) . ,

Proof:
2p−1∑
n=0

(
2n
n

)
=

2p−1∑
n=0

CT

[(
2 + x+

1
x

)n]
= CT

[(
2 + x+ 1

x

)2p − 1
2 + x+ 1

x − 1

]

= CT

[(
6 + 4x+ 4

x + x2 + 1
x2

)p − 1
2 + x+ 1

x − 1

]
≡p CT

[(
6 + 4xp + 4

xp + x2p + 1
x2p

)
− 1

2 + x+ 1
x − 1

]

= COEFF[x2p−1]

[
1 + 4xp

1 + x+ x2

]
= COEFF[x2p−1]

[
1

1 + x+ x2

]
+ 4 · COEFF[xp−1]

[
1

1 + x+ x2

]

= COEFF[x2p−1]

[
1− x

1− x3

]
+ 4 · COEFF[xp−1]

[
1− x

1− x3

]

= COEFF[x2p−1]

[
1

1− x3

]
+COEFF[x2p−1]

[
−x

1− x3

]
+4·COEFF[xp−1]

[
1

1− x3

]
+4·COEFF[xp−1]

[
−x

1− x3

]

= COEFF[x2p]

[ ∞∑
i=0

x3i+1

]
+ COEFF[x2p]

[ ∞∑
i=0

(−1) · x3i+2

]

+4 · COEFF[xp]

[ ∞∑
i=0

x3i+1

]
+ 4 · COEFF[xp]

[ ∞∑
i=0

(−1) · x3i+2

]

The result follows from extracting the coefficients of x2p in the first two geometrical series above,
and the coefficient of xp in the last two.

The same method (of [CHZ]) can be used to find the ‘mod p’ of
∑rp−1

n=0

(
2n
n

)
for any specific positive

integer r. This lead to the following conjecture, that we (rigorously) proved (with a computer) for
r ≤ 10. We believe that the same method can be used to handle it when r is left general, but we
prefer to leave it as a challenge to our readers.

Conjecture 1” For any priem p ≥ 5, and any positive integer, r,

rp−1∑
n=0

(
2n
n

)
≡p

{
αr, if p ≡ 1 (mod 3) ;
−αr, if p ≡ 2 (mod 3) ,
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where

αr =
r−1∑
n=0

(
2n
n

)
For the record, here are the first ten terms of the integer sequence αr:

[1, 3, 9, 29, 99, 351, 1275, 4707, 17577, 66187] .

To our surprise, at this time of writing (June 9, 2016), the sequence αr is not (yet) in the OEIS,
but αr − 1 is Sequence A066796 [[Sl],https://oeis.org/A066796]. Note that αr is the number of
ways of tossing a coin < 2r times and getting at many Heads as Tails (including tossing it 0 times,
while αr − 1 excludes the lazy option of doing nothing).

The most ubiquitous sequence in combinatorics is sequence A000108 in the great OEIS
([Sl], https://oeis.org/A000108, that according to Neil Sloane is the longest entry!), the super-
famous Catalan Numbers, Cn := (2n)!/(n!(n+ 1)!, that count zillions of combinatorial families (see
[St] for some of the more interesting ones)

Proposition 2: Let Cn be the Catalan Numbers, then, for every prime p ≥ 5,

p−1∑
n=0

Cn ≡p

{
1, if p ≡ 1 (mod 3) ;
−2, if p ≡ 2 (mod 3) . ,

Proof: Since Cn =
(
2n
n

)
−
(

2n
n−1

)
, it is readily seen that Cn = CT [(1− x)( 1

2+x+ 1
x

)n]. We have

p−1∑
n=0

Cn =
p−1∑
n=0

CT

[
(1− x)

(
2 + x+

1
x

)n]
= CT

[
(1− x)

((
2 + x+ 1

x

)p − 1
)

2 + x+ 1
x − 1

]

≡p CT

[
(1− x)

((
2 + xp + 1

xp

)
− 1
)

2 + x+ 1
x − 1

]
= COEFF[xp−1]

[
1− x

1 + x+ x2

]
= COEFF[xp−1]

[
(1− x)2

1− x3

]

= COEFF[xp]

[
x

1− x3

]
+ COEFF[xp]

[
−2x2

1− x3

]
+ COEFF[xp]

[
x3

1− x3

]

= COEFF[xp]

[ ∞∑
i=0

1 · x3i+1

]
+ COEFF[xp]

[ ∞∑
i=0

(−2) · x3i+2

]
+ COEFF[xp]

[ ∞∑
i=0

1 · x3i+3

]
,

and the result follows from extracting the coefficient of xp from the first or second geometric series
above (note that we would never have to use the third geometrical series, if p > 3).

The same method (of [CHZ]) can be used to find the ‘mod p’ of
∑rp−1

n=0 Cn for any specific positive
integer r. This lead to the following conjecture, that we (rigorously) proved (with a computer) for
r ≤ 10. We believe that the same method can be used to handle it when r is left general, but we
prefer to leave it as a challenge to our readers.
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Conjecture 2’: Let Cn be the Catalan Numbers, then, for any positive integer r, there

rp−1∑
n=0

Cn ≡p

{
βr, if p ≡ 1 (mod 3) ;
−γr, if p ≡ 2 (mod 3) ,

where

βr =
r−1∑
n=0

Cn , γr =
r−1∑
n=0

(3n+ 2)Cn .

For the record, the first ten terms of the sequence of integer pairs [βr,−γr] are

[[1,−2], [2,−7], [4,−23], [9,−78], [23,−274], [65,−988], [197,−3628], [626,−13495], [2076,−50675], [6918,−191673]] .

We note that the sequence βr is sequence A014137 in the OEIS ([Sl], https://oeis.org/A014137)
but at this time of writing (June 9, 2016), the sequence γr is not there (yet).

Not as famous as the Catalan numbers, but not exactly obscure, are the Motzkin numbers, Mn,
sequence A001006 in the great OEIS ([Sl], https://oeis.org/A001006), that may be defined by
the constant term formula

Mn = CT

[
(1− x2)

(
1 + x+

1
x

)n]
.

Proposition 3: Let Mn be the Motzkin numbers, then for any prime p ≥ 3, we have

p−1∑
n=0

Mn ≡p

{
2, if p ≡ 1 (mod 4) ;
−2, if p ≡ 3 (mod 4) .

Proof:

p−1∑
n=0

Mn =
p−1∑
n=0

CT

[
(1− x2)

(
1 + x+

1
x

)n]
= CT

[
(1− x2)

((
1 + x+ 1

x

)p − 1
)

1 + x+ 1
x − 1

]

≡p CT

[
(1− x2)

(
1 + xp + 1

xp − 1
)

1 + x+ 1
x − 1

]
= CT

[
(1− x2)

(
xp + 1

xp

)
x+ 1

x

]
= CT

[
x(1− x2)

(
xp + 1

xp

)
1 + x2

]

= COEFF[xp−1]

[
1− x2

1 + x2

]
= COEFF[xp]

[
x

1 + x2

]
− COEFF[xp]

[
x3

1 + x2

]
.

= COEFF[xp]

[ ∞∑
i=0

(−1)ix2i+1

]
+ COEFF[xp]

[ ∞∑
i=0

(−1)i+1x2i+3

]
,
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and the result follows from extracting the coefficient of xp from the first and second geometric series
above, by noting that when p ≡ 1 (mod 4) i is even in the first series, and odd in the second one,
and vice-versa when p ≡ 1 (mod 4).

The same method yieds

Conjecture 3’: Let Mn be the Motzkin numbers, and let p ≥ 3 be prime, then for any positive
integer r, there exists an integer δr such that

rp−1∑
n=0

Mn ≡p

{
δr, if p ≡ 1 (mod 4) ;
−δr, if p ≡ 3 (mod 4) .

Using the present method ([CHZ]) we rigorously proved that the first ten terms of the integer
sequence δr are

[2, 4, 10, 24, 62, 164, 446, 1232, 3446, 9724] .

At this time of writing (June 9, 2016), the sequence δr is not (yet) in the OEIS.

Challenge: Can you find an expression for δr in terms of r?

From the above proofs, it is easy to observe that partial sums with upper summation limit of the
form rp − 1, for r > 1, can always be expressed in terms of the sum with upper summation limit
p− 1. This observation leads us to the following simplification of Theorem 2.1 in [CHZ].

Theorem 4. Let P (x) be a Laurent polynomial in x and let p be a prime. Let R(x) be the
denominator, after clearing, of the expression

P (xp)− 1
P (x)− 1

.

Then, for any positive integer r and Laurent polynomial Q(x),(
rp−1∑
n=0

CT [P (x)nQ(x)]

)
mod p ,

is congruent to a finite linear combination of shifts of the sequence of coefficients of the rational

function
1

R(x)
.

Multi-Sums and Multi-Variable

We now go to the new material.

Proposition 5. Let p ≥ 5 be a prime number, then

p−1∑
n=0

p−1∑
m=0

(
n+m

m

)2

≡p

{
1, if p ≡ 1 (mod 3) ;
−1, if p ≡ 2 (mod 3) .
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Proof: Let

P (x, y) = (1 + y)
(

1 +
1
x

)
and

Q(x, y) = (1 + x)
(

1 +
1
y

)
Then (

n+m

m

)2

=
(
n+m

m

)(
n+m

n

)
= CT [P (x, y)nQ(x, y)m] .

We have

p−1∑
m=0

p−1∑
n=0

(
m+ n

m

)2

=
p−1∑
m=0

p−1∑
n=0

CT [P (x, y)nQ(x, y)m] =
p−1∑
m=0

CT

[
(P (x, y)p − 1)Q(x, y)m

P (x, y)− 1

]

= CT

[(
P (x, y)p − 1
P (x, y)− 1

)(
Q(x, y)p − 1
Q(x, y)− 1

)]
.

Using the Freshman’s Dream ((a+ b)p ≡ (ap + bp) mod p), we can pass to mod p as above, we get

p−1∑
m=0

p−1∑
n=0

(
m+ n

m

)2

≡p CT

[(
P (xp, yp)− 1
P (x, y)− 1

)(
Q(xp, yp)− 1
Q(x, y)− 1

)]
≡p CT

[
(1 + yp + xpyp)(1 + xp + xpyp)

(1 + y + xy)(1 + x+ xy)xp−1yp−1

]

≡p COEFF[xp−1yp−1]

[
(1 + yp + xpyp)(1 + xp + xpyp)

(1 + y + xy)(1 + x+ xy)

]
≡p COEFF[xp−1yp−1]

[
1

(1 + y + xy)(1 + x+ xy)

]
.

It is possible to show that the coefficient of xnyn in the Maclaurin expansion of the rational function
1

(1+y+xy)(1+x+xy) is 1 when n is a multiple of 3 and 0 otherwise. One way is to do a partial-fraction
decomposition, and extract the coefficient of xn, getting a certain expression in y and n, and then
extracting the coefficient of yn. Another way is by using the Apagodu-Zeilberger algorithm ([AZ]),
the yields that the diagonal coefficients satisfy the recurrence equation a(n+2)+a(n+1)+a(n) = 0
with initial conditions a(0) = 1, a(1) = −1.

Based on computer calculations, we conjecture

Conjecture 5’. For any prime p ≥ 5, and any pair of positive integers, r, s, we have

rp−1∑
n=0

sp−1∑
m=0

(
n+m

m

)2

≡p

{
εrs, if p ≡ 1 (mod 3) ;
−εrs, if p ≡ 2 (mod 3) ,

where

εrs =
r−1∑
m=0

s−1∑
n=0

(
n+m

m

)2

.

We finally consider partial sums of trinomial coefficients.
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Proposition 6. Let p > 2 be prime,

p−1∑
m1=0

p−1∑
m2=0

p−1∑
m3=0

(
m1 +m2 +m3

m1,m2,m3

)
≡p 1 .

Proof: First observe that
(
m1+m2+m3
m1,m2,m3

)
= CT

[
(x+y+z)m1+m2+m3

xm1ym2zm3

]
.

Hence ∑
0≤m1,m2,m3≤p−1

(
m1 +m2 +m3

m1,m2,m3

)
=

∑
0≤m1,m2,m3≤p−1

CT
[
(x+ y + z)m1+m2+m3/(xm1ym2zm3)

]

= CT

 ∑
0≤m1,m2,m3≤p−1

(x+ y + z)m1+m2+m3

xm1ym2zm3


= CT

[(
p−1∑

m1=0

(
x+ y + z

x

)m1
)(

p−1∑
m2=0

(
x+ y + z

x

)m2
)(

p−1∑
m3=0

(
x+ y + z

x

)m3
)]

= CT

[
(x+y+z

x )p − 1
x+y+z

x − 1

(x+y+z
y )p − 1

x+y+z
y − 1

(x+y+z
z )p − 1

x+y+z
z − 1

]

= COEFF[xp−1yp−1zp−1]

[
(x+ y + z)p − xp

y + z
· (x+ y + z)p − yp

x+ z
· (x+ y + z)p − zp

x+ y

]
.

So far this is true for all p, not only p prime. Now take it mod p and get, using the Freshman’s
Dream in the form (x+ y + z)p ≡p x

p + yp + zp, that

p−1∑
m1=0

p−1∑
m2=0

p−1∑
m3=0

(
m1 +m2 +m3

m1,m2,m3

)
≡p COEFF[xp−1yp−1zp−1]

(
yp + zp

y + z
· x

p + zp

x+ z
· y

p + zp

y + z

)

= COEFF[xp−1yp−1zp−1]

(
p−1∑
i=0

(−1)iyizp−1−i

)p−1∑
j=0

(−1)jzjxp−1−j

(p−1∑
k=0

(−1)kxkyp−1−k

)

= COEFF[xp−1yp−1zp−1]

 ∑
0≤i,j,k<p

(−1)i+j+kxp−1−j+kyi+p−1−kzp−1−i+j

 .

The only contributions to the coefficient of xp−1yp−1zp−1 in the above triple sum come when
i = j = k, so the desired coefficient of xp−1yp−1zp−1 is

p−1∑
i=0

(−1)3i =
p−1∑
i=0

(−1)i = (1− 1 + 1− 1 + . . .+ 1− 1) + 1 = 1 .

Based on ample computer data, we conjecture
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Proposition 6’. Let p ≥ 3 be prime, and let r, s, t be any positive integers, then

rp−1∑
m1=0

sp−1∑
m2=0

tp−1∑
m3=0

(
m1 +m2 +m3

m1,m2,m3

)
≡p κrst ,

where

κrst =
r−1∑

m1=0

s−1∑
m2=0

t−1∑
m3=0

(
m1 +m2 +m3

m1,m2,m3

)
.

The same method of proof used in Proposition 6 yields (with a little more effort) a multinomial
generatlization.

Proposition 7. Let p ≥ 3 be prime, then

p−1∑
m1=0

. . .

p−1∑
mn=0

(
m1 + . . .mn

m1, . . . ,mn

)
≡p 1 .

More generally, we conjecture

Proposition 7’. Let p ≥ 3 be prime, and let r1, . . . , rn be positive integers, then

r1p−1∑
m1=0

. . .

rnp−1∑
mn=0

(
m1 + . . .mn

m1, . . . ,mn

)
≡p κr1...rn ,

where

κr1...rn =
r1−1∑
m1=0

. . .

rn−1∑
mn=0

(
m1 + . . .mn

m1, . . . ,mn

)
.
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