The Reciprocal of $1+a b+a a b b+a a a b b b+\ldots$ for NON-COMMUTING a and b

Vladimir RETAKH ${ }^{1}$ and Doron ZEILBERGER ${ }^{1}$

Proposition: Let a, b, x be (completely!) non-commuting variables ("indeterminates"). Define a sequence of polynomials $d_{n}(a, b, x)(n \geq 1)$ recursively as follows:

$$
\begin{gathered}
d_{1}(a, b, x)=1 \\
d_{n}(a, b, x)=d_{n-1}(a, b, x) x+\sum_{k=2}^{n-1} d_{n-k}(a, b, x) a d_{k}(a, b, x) b \quad(n \geq 2) .
\end{gathered}
$$

Also define the sequence of polynomials $c_{n}(a, b, x)$ as follows:

$$
c_{n}(a, b, x)=a d_{n}(a, b, x) b \quad(n \geq 1) .
$$

Then

$$
1-\sum_{n=1}^{\infty} c_{n}(a, b, a b-b a)=\left(\sum_{n \geq 0} a^{n} b^{n}\right)^{-1}
$$

Proof: Consider the set of lattice walks in the 2D rectangular lattice, starting at the origin, $(0,0)$ and ending at $(n-1, n-1)$, where one can either make a horizontal step $(i, j) \rightarrow(i+1, j)$, (weight a), a vertical step $(i, j) \rightarrow(i, j+1)$, (weight b) or a diagonal step $(i, j) \rightarrow(i+1, j+1)$, (weight x), always staying in the region $i \geq j$, and where you can neither have a horizontal step followed immediately by a vertical step, nor a vertical step followed immediately by a horizontal step. In other words, you may never venture to the region $i<j$, and you can have neither the Hebrew letter Nun (alias the mirror-image of the Latin letter L) nor the Greek letter Γ when you draw the path on the plane. The weight of a path is the product (in order!) of the weights of the individual steps.

For example, when $n=2$ the only possible path is $(0,0) \rightarrow(1,1)$, whose weight is x.
When $n=3$ we have two paths. The path $(0,0) \rightarrow(1,1) \rightarrow(2,2)$ whose weight is x^{2} and the path $(0,0) \rightarrow(1,0) \rightarrow(2,1) \rightarrow(2,2)$ whose weight is axb.

When $n=4$ we have five paths:
The path $(0,0) \rightarrow(1,1) \rightarrow(2,2) \rightarrow(3,3)$ whose weight is x^{3},
the path $(0,0) \rightarrow(1,0) \rightarrow(2,1) \rightarrow(3,2) \rightarrow(3,3)$ whose weight is $a x^{2} b$,
the path $(0,0) \rightarrow(1,0) \rightarrow(2,1) \rightarrow(2,2) \rightarrow(3,3)$ whose weight is $a x b x$,

[^0]the path $(0,0) \rightarrow(1,1) \rightarrow(2,1) \rightarrow(3,2) \rightarrow(3,3)$ whose weight is $x a x b$, and
the path $(0,0) \rightarrow(1,0) \rightarrow(2,0) \rightarrow(3,1) \rightarrow(3,2) \rightarrow(3,3)$ whose weight is $a^{2} x b^{2}$.
It is very well-known, and rather easy to see, that the number of such paths are given by the Catalan numbers $C(n-1)$, http://oeis.org/A000108.

We claim that the weight-enumerator of the set of such walks equals $d_{n}(a, b, x)$. Indeed, since the walk ends on the diagonal, at the point $(n-1, n-1)$, the last step must be either a diagonal step

$$
(n-2, n-2) \rightarrow(n-1, n-1)
$$

whose weight-enumerator, by the inductive hypothesis is $d_{n-1}(a, b, x) x$, or else let k be the smallest integer such that the walk passed through $(n-k-1, n-k-1)$ (i.e. the penultimate encounter with the diagonal). Note that k can be anything between 2 and $n-1$. The weight-enumerator of the set of paths from $(0,0)$ to $(n-k-1, n-k-1)$ is $d_{n-k}(a, b, x)$, and the weight-enumerator of the set of paths from $(n-k-1, n-k-1)$ to $(n-1, n-1)$ that never touch the diagonal, is $a d_{k}(a, b, x) b$. So the weight-enumerator is $d_{n-k}(a, b, x) a d_{k}(a, b, x) b$ giving the above recurrence for $d_{n}(a, b, x)$.

It follows that $c_{n}(a, b, x)=a d_{n}(a, b, x) b$ is the weight-enumerator of all paths from $(0,0)$ to (n, n) as above with the additional property that except at the beginning $((0,0))$ and the end $((n, n))$ they always stay strictly below the diagonal.

Now what does $c_{n}(a, b, a b-b a)$ weight-enumerate? Now there is a new rule in Manhattan, "no shortcuts", one may not walk diagonally. So every diagonal step $(i, j) \rightarrow(i+1, j+1)$ must decide whether
to go first horizontally, and then vertically $(i, j) \rightarrow(i+1, j) \rightarrow(i+1, j+1)$, replacing x by $a b$, or to go first vertically, and then horizontally $(i, j) \rightarrow(i, j+1) \rightarrow(i+1, j+1)$, replacing x by $-b a$.

This has to be decided, independently for each of the diagonal steps that formerly had weight x. So a path with r diagonal steps gives rise to 2^{r} new paths with $\operatorname{sign}(-1)^{s}$ where s is the number of places where it was decided to go through the second option.

So $c_{n}(a, b, a b-b a)$ is the weight-enumerators of pairs of paths
$[P, C]$
where P is the original path featuring a certain (possibly zero) number of diagonal steps r, and C is one of its 2^{r} "children", paths with only horizontal and vertical steps, and weight \pm weight (C), where we have a plus-sign if an even number of the r diagonal steps became vertical-then-horizontal (i.e. $b a$) and a minus-sign otherwise.

As we look at the weights of the children C sometimes we have the same path coming from different parents. Let's call a pair $[P, C]$ a bad guy if the path C has a " $b a$ " strictly-under the diagonal, i.e. a "vertical step followed by a horizontal step" that does not touch the diagonal. Write C as $C=w_{1}(b a)^{s} w_{2}$ where w_{1} does not have any sub-diagonal $b a$'s and s is as large as possible. Then the parent must be either of the form $P=W_{1} x^{s} W_{2}$ where the x^{s} corresponds to the $(b a)^{s}$, or of the form $P^{\prime}=W_{1} b x^{s-1} a W_{2}$. In the former case attach [$W_{1} x^{s} W_{2}, C$] to $\left[W_{1} b x^{s-1} a W_{2}, C\right]$ and in the latter case vice-versa. This is a weight-preserving and sign-reversing involution among the bad guys, so they all kill each other.

It remains to weight-enumerate the good guys. It is easy to see that the good guys are pairs $[P, C]$ where C has the form $C=a^{i_{1}} b^{i_{1}} a^{i_{2}} b^{i_{2}} \ldots a^{i_{s}} b^{i_{s}}$ for some $s \geq 1$ and integers $i_{1}, \ldots, i_{s} \geq 1$ summing up to n (this is called a composition of n). It is easy to see that for each such C, (coming from a good guy $[P, C]$)there can only be one possible parent P. The sign of a good guy

$$
\left[P, a^{i_{1}} b^{i_{1}} a^{i_{2}} b^{i_{2}} \ldots a^{i_{s}} b^{i_{s}}\right]
$$

is $(-1)^{s-1}$, since it touches the diagonal $s-1$ times, and each of these touching points came from an x that was turned into $-b a$.

So $1-\sum_{n=1}^{\infty} c_{n}(a, b, a b-b a)$ turned out to be the sum of all the weights of compositions (vectors of positive integers) $\left(i_{1}, \ldots, i_{s}\right)$ with the weight $(-1)^{s} a^{i_{1}} b^{i_{1}} \cdots a^{i_{s}} b^{i_{s}}$ over all compositions, but the same is true of

$$
\left(\sum_{n \geq 0} a^{n} b^{n}\right)^{-1}=\left(1+\sum_{n \geq 1} a^{n} b^{n}\right)^{-1}=1+\sum_{s=1}^{\infty}(-1)^{s}\left(\sum_{n \geq 1} a^{n} b^{n}\right)^{s}
$$

QED!

[^0]: 1 Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA. [vretakh, zeilberg] at math dot rutgers dot edu,
 http://www.math.rutgers.edu/~vretakh/, http://www.math.rutgers.edu/~zeilberg/ . Feb. 22, 2012.

