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Abstract. Using a certification procedure for Abel-type sums, we present a computerized proof of Abel’s identity.

Abel’s identity [1],[2] can be proved in many ways, including the elegant combinatorial methods of [3].
Here we present the first computer-generated proof using the methods introduced in [4].

Theorem([1]; [2], p.128). For n ≥ 0:

n∑
k=0

(
n

k

)
(r + k)k−1(s− k)n−k =

(r + s)n

r
. (1)

Proof. Let Fn,k(r, s) and an(r, s) denote, respectively, the summand and sum on the LHS of (1), and let
Gn,k := (s− n)

(
n−1
k−1

)
(k + r)k−1(s− k)n−k−1. Since

Fn,k(r, s)− sFn−1,k(r, s)− (n + r)Fn−1,k(r + 1, s− 1) + (n− 1)(r + s)Fn−2,k(r + 1, s− 1) = Gn,k −Gn,k+1 ,

(check!), we have by summing from k = 0 to k = n, thanks to the telescoping on the right:

an(r, s)− san−1(r, s)− (n + r)an−1(r + 1, s− 1) + (n− 1)(r + s)an−2(r + 1, s− 1) = 0.

Since (r + s)n · r−1 also satisfies this recurrence (check!) with the same initial conditions a0(r, s) = r−1 and
a1(r, s) = (r + s) · r−1, (1) follows. �

We thank Herb Wilf for a great shrinking comment on an earlier (much longer) version.
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