
The HOLONOMIC ANSATZ
I. FOUNDATIONS and Applications to Lattice Walk Counting

Doron ZEILBERGER 1

The Ansatz Ansatz

Thomas Kuhn famously believed that Science is paradigm-based. His approach to science could
be thus dubbed the Paradigm Paradigm. Doron Zeilberger, not-yet so famously, believes that
Mathematics, in the future, will be ansatz-based, so my approach to mathematical research could
be called the Ansatz Ansatz.

What is an Ansatz?

According to Eric Weisstein’s mathworld.com wonderful website, in an entry contributed by Mark
D. Carrara[CaW],

“An ansatz is an assumed form for a mathematical statement that is not based on any underlying
theory or principle.”

In other words, you make a wild guess that the desired solution has a certain form, featuring some
undetermined coefficients, “plug” that form into the conditions of the problems, and try to solve
for the coefficients. If in luck, you find a solution, and then, since the proof of the pudding is in the
eating, you have an a posteriori justification for choosing that ansatz, and more importantly for
your short-term goals, you have solved the problem! In addition, your present success will give
you more confidence that this ansatz might possibly work for similar problems in the future.

A More Relaxed Definition of Ansatz

Let’s not insist that our conjectured form not be “based on any underlying theory or principle”. If
it is, all the better, but in that case it might be better to forget this fact.

In the applications to lattice walk counting described later in this first installment, WZ theory
indeed presents such a justification([A]), but this fact will not be used here, since it will detract
from our general methodology, that is purely empirical and abhors ‘theory’.

On the other hand in the applications to be described in [Z1], we don’t have to ‘forget’ anything.
There is no iota of (a priori) theoretical justification (at present) for choosing the holonomic ansatz.
The miracle is that it works (in many cases)!
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Some Examples of Famous Ansatzes

As far as I know, the first named ansatz was the celebrated Bethe Ansatz from statistical physics,
but physicists have been speaking the prose of ansatz from time immemorial. In fact, every time
they fit data into a curve (usually transformed so that it would be a straight line), they implicitly
use an ansatz, and are looking for the parameters describing the curve (the slope and intercept,
in case of a line). Of course, these poor experimenters have to worry about experimental error, a
problem that we mathematicians (usually) don’t have.

The Constant Ansatz

Physical scientists have their physical constants, e.g. c, h,G, and to determine their values they
perform lots of careful experiments and hope to get the same answer all the time, within the error
bars of experimental accuracy, that they try to make as small as possible. But even in mathematics
the seemingly trivial constant ansatz has a place.

An old puzzle of Martin Garden

The 7th problem of Chapter 7 of [G] has the following information.

10am: Mr. and Mrs. Smith leave their Connecticut home.

11am: Mrs. Smith asks Mr. Smith: “How far have we gone dear?”, Mr. Smith replies: “half of
the distance from here to Patricia Murphy’s Restaurant”.

12noon: They arrive at the restaurant, and eat for an unspecified time and then continue.

5pm: They are 200 miles from where they were at 11am. Mrs. Smith ventures another question:
“How much further do we have to go dear?” Mr. Smith replies: “Half as far as the distance from
here to Patricia Murphy”.

7pm: Arrive at the Pennsylvania home of Mr. Smith’s in-laws.

Question: How far did the Smiths travel?

Solution: Obviously the timing is irrelevant, and using the meta-information that the problem
is well-posed and has a unique solution, it follows that the answer is independent of the distance
traveled between 10am and 11am, hence the answer belongs to the constant ansatz. Plugging-in
any value for that distance will give you the right answer, so why not make it zero! When that
distance is zero, the locations arrived at 10am, 11am, 12noon are identical (in particular Patricia
Murphy’s restaurant is located at the Smith home). At 5pm they were 200 miles from their home,
and still had (1/2) · 200 = 100 miles to go, making the total distance 200 + 100 = 300 miles.
Ans.:300 miles.

Of course if we weren’t so trustworthy of the question, then we would have had to use algebra and
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calling x the distance traveled between 10am to the 11am, the distance traveled between 11am and
12noon would be 2x, the distance between the 12am and 5pm locations would be 200− 2x and the
remaining distance would be another 100−x miles, making the total distance x+2x+(200−2x)+
(100− x) = 300 miles.

The Polynomial Ansatz

This is often used, implicitly, by takers of IQ tests, when they have to continue a sequence such
as 1, 3, 6, 10, 15, 21, . . .. A very striking example can be found in [Z3]. Since it is so snappy, let me
quote it in its entirety.

For a permutation π, let inv π be the number of (i, j), such that 1 ≤ i < j ≤ n and π[i] > π[j], and maj π

be the sum of i, such that 1 ≤ i < n and π[i] > π[i+ 1]. Svante Janson asked Don Knuth, who asked me, about

the covariance of inv and maj. The answer is
(
n
2

)
/4. To prove it, I asked Shalosh to compute the average of the

quantity (inv π − E(inv))(maj π − E(maj)) over all permutations of a given length n, and it gave me, for

n = 1, 2, 3, 4, 5, the values 0, 1/4, 3/4, 3/2, 5/2, respectively. Since we know a priori2 that this is a polynomial

of degree ≤ 4, this must be it!

The Schützenberger Ansatz

A sequence a(n) belongs to that ansatz whenever its generating function is a solution of an algebraic
equation whose coefficients are polynomials in x, the paradigmatic example being the Catalan
numbers. See my Maple package SCHUTZENBERGER available from my website.

My favorite: The Holonomic Ansatz

Recall that a sequence a(n) (of a single discrete variable n) is called holonomic if it satisfies a
(homogeneous) linear recurrence equation with polynomial coefficients, i.e. there exists a positive
integer L (the order), and L+ 1 polynomials p0(n), p1(n), . . . , pL(n) such that

L∑
i=0

pi(n)a(n+ i) = 0 .

This concept was implicit for a long time, but was first explicated in Richard Stanley’s seminal
paper [S]. Stanley called such sequences P-recursive.

In my seminal paper [Z4], I show that almost everything in sight in enumerative combinatorics,
and a lot elsewhere, is holonomic. I also gave a “slow” algorithm that was later made much faster
by Frederic Chyzak and others, and in later developments I found much faster algorithms for
important special cases. But this is not the point of the present article. I claim that many specific

2 This is the old trick to compute moments of combinatorial ‘statistics’, described nicely in Graham, Knuth, and

Patashnik’s ‘Concrete Math’, section 8.2, by changing the order of summation. It applies equally well to covariance.

Rather than actually carrying out the gory details, we observe that this is always a polynomial whose degree is trivial

to bound.
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results discoverable and provable via WZ theory, can be found without it, using the present purely
empirical approach. Often the present approach is much slower, and sometimes intractable, but in
other cases it is faster. But ‘slow vs. fast’ is not the main point here. I want to illustrate the ansatz
ansatz using the “Holonomic ansatz” as a case study, and here lies the main significance of
the present endeavor.

Discrete Holonomic Functions of Several Variables

A function on Zd or Nd, a(n1, . . . , nd) is holonomic, if for each of its variables, nj , there exist an
integer Lj and polynomials p(j)

i (n1, . . . , nd) such that

Lj∑
i=0

p
(j)
i (n1, . . . , nd)a(n1, . . . , nj−1, nj + i, nj+1, . . . , nd) = 0 .

Of course, the polynomial coefficients p(j)
i over-determine the sequence, and hence must satisfy lots

of compatibility conditions.

The METHOD of Guessing-The-Answer-And-Then-Proving-It-By-Induction and Long
Live “Essentially Verification”

G.H. Hardy lamented that all the then known proofs of the Rogers-Ramanujan identities were
either complicated or ‘essentially verification’. Indeed, most mathematicians, at least until recently,
looked down on guessing, with the notable exception of my hero George Polya. Locally, of course,
mathematicians are guessing all the time, this is what research is all about. However, many times
they don’t even know that they are guessing, and when they do, they downplay it, and cover their
traces after they discover a proof.

But with the mighty computer, guessing can be carried to new heights! And not only for making
conjectures, but also for proving them! Because what is a proof? It is just another mathematical
object, and as such we can guess it and search for it! But we can’t make the haystack too large,
that’s why we need anstazes. For any good ansatz, we need to teach the computer how to guess
results (and, whenever possible, proofs) using that ansatz. In this series of articles we do it for the
holonomic ansatz.

An Example of the Guess-And-Prove Approach that Even Humans can do

Suppose that we want to solve the following

Problem: Find a formula for F (m,n), the number of ways of walking in the positive quadrant of
the 2D square lattice, from the origin (0, 0) to the point (m,n), using unit fundamental steps.

Solution: By the obvious combinatorics, F (m,n) is characterized by the linear partial recurrence
equation (with constant coefficients)

F (m,n) = F (m− 1, n) + F (m,n− 1) , (Pascal)
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subject to the boundary conditions F (m, 0) = 1 and F (0, n) = 1.

In a way, this is already an answer! We can use it to write a double do-loop that iteratively prints
out a table of the values of F for 0 ≤ m,n ≤ K for any desired K. In particular, to compute
F (100000, 100000) all we need is compute 1010 intermediate values. But we can do better! We can
try and guess a nice formula for F (m,n).

So let’s, interactively, ask the computer (in this case paper-and-pencil and perhaps just mental
math suffices) to crank out the first few values of F (m, 1), say m = 0, 1, 2, . . . , 10. Using (Pascal)
with n = 1 we get, starting from m = 0,

F (0, 1) = 1 , F (1, 1) = 2 , F (2, 1) = 3 , F (3, 1) = 4 , F (4, 1) = 5 , F (5, 1) = 6 ,

and anyone with IQ ≥ 90 would guess that

F (m, 1) = m+ 1 .

Now we do the same thing for n = 2 and get

F (0, 2) = 1 , F (1, 2) = 3 , F (2, 2) = 6 , F (3, 2) = 10 , F (4, 2) = 15 , F (5, 2) = 21 ,

and anyone with IQ ≥ 100 would guess that

F (m, 2) =
(m+ 2)(m+ 1)

2
.

Now we do the same thing for n = 3 and get

F (0, 3) = 1 , F (1, 3) = 4 , F (2, 3) = 10 , F (3, 3) = 20 , F (4, 3) = 35 , F (5, 3) = 56 ,

and anyone with IQ ≥ 110 would guess that

F (m, 3) =
(m+ 3)(m+ 2)(m+ 1)

6
.

Similarly

F (m, 4) =
(m+ 4)(m+ 3)(m+ 2)(m+ 1)

24
.

Now anyone with meta-IQ ≥ 100 would guess that

F (m,n) =
(m+ n)(m+ n− 1) · · · (m+ 1)

n!
.

And Hurray!, we have a gorgeous conjecture. But how do we prove it? We plug-it in into
the defining relation of F (m,n), namely (Pascal). So let’s call the conjectured right-hand-side,
(m+ n)!/(m!n!), G(m,n):

G(m,n) :=
(m+ n)!
m!n!

.
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To prove that indeed F (m,n) = G(m,n), we first check the boundary conditions, and get G(0, n) =
(0 + n)!/(0!n!) = 1, and G(m, 0) = (m+ 0)!/(m!0!) = 1. Our conjecture would follow by induction
(on m+ n) once we check that

G(m,n) = G(m− 1, n) +G(m,n− 1) . (Pascal′)

Dividing this by G(m,n) this is equivalent to

1 =
G(m− 1, n)
G(m,n)

+
G(m,n− 1)
G(m,n)

,

which in turn, using the properties of factorials, is equivalent to

1 =
m

m+ n
+

n

m+ n
,

which is indeed true, thanks to high-school algebra. Yea for us!, we have just rediscovered and
reproved

The Levi Ben Gerson Theorem

F (m,n) =
(m+ n)!
m!n!

.

A triumph to the GuessAndProve “heuristics”!

An Example of the Guess-And-Prove Approach that Humans can’t do

Suppose that we want to solve the following

Problem: Find a formula for H(m,n), the number of ways that a forward-going King can walk
from (0, 0) to (m,n), in an infinite chessboard. In other words, the number of walks in the positive
quadrant of the 2D square lattice, from the origin (0, 0) to the point (m,n), where the set of
fundamental steps is {(1, 0), (0, 1), (1, 1)}.

Solution: By the obvious combinatorics, H(m,n) is characterized by the linear partial recurrence
equation (with constant coefficients)

H(m,n) = H(m− 1, n) +H(m,n− 1) +H(m− 1, n− 1) , (ChessKing)

subject to the boundary conditions H(m, 0) = 1 and H(0, n) = 1.

In a way, this is already an answer! We can use it to write a double do-loop that iteratively prints
out a table of the values of H for 0 ≤ m,n ≤ K for any desired K. In particular to compute
H(100000, 100000), all we need is compute 1010 intermediate values. But we can do better! We
can try and guess a “formula” for H(m,n), but let’s not insist on it being “nice”.
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So let’s interactively ask the computer (in this case paper-and-pencil and perhaps just mental math
suffices) to crank out the first few values of H(m, 1), say m = 0, 1, 2, . . . , 10. Using (ChessKing)
with n = 1 we get, starting from m = 0,

H(0, 1) = 1 , H(1, 1) = 3 , H(2, 1) = 5 , H(3, 1) = 7 , H(4, 1) = 9 , H(5, 1) = 11 ,

and anyone with IQ ≥ 95 would guess that

H(m, 1) = 2m+ 1 .

Now we do the same thing for n = 2 and get

H(0, 2) = 1 , H(1, 2) = 5 , H(2, 2) = 13 , H(3, 2) = 25 , H(4, 2) = 41 , H(5, 2) = 61 ,

and anyone with IQ ≥ 110 would guess that

H(m, 2) = 1 + 2m+ 2m2 .

Now we do the same thing for n = 3 and get

H(0, 3) = 1 , H(1, 3) = 7 , H(2, 3) = 25 , H(3, 3) = 63 , H(4, 3) = 129 , H(5, 3) = 231 ,

and anyone with IQ ≥ 125 would guess that

H(m, 3) = 1 +
8
3
m+ 2m2 +

4
3
m3 .

Similarly

H(m, 4) = 1 +
8
3
m+

10
3
m2 +

4
3
m3 +

2
3
m4 ,

and one can continue, and use the polynomial ansatz to conjecture, for each specific n0, an explicit
formula

H(m,n0) = pn0(m) ,

for some explicit polynomial pn0(m) of degree n0 in m.

But no human, not even Andrew Wiles or Arthur Benjamin, has sufficient meta-IQ to conjecture
a general ‘nice’ formula for H(m,n) for arbitrary n.

But perhaps we have to be more liberal and relax the meaning of nice. In the previous example,
we conjectured, and then proved, a closed-form formula for F (m,n)

F (m,n) =
(m+ n)!
m!n!

, (EXPLICIT )

but this is equivalent to the following facts

(m+ 1)F (m+ 1, n)− (m+ n+ 1)F (m,n) = 0 , (RecurrenceM)
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and
(n+ 1)F (m,n+ 1)− (m+ n+ 1)F (m,n) = 0 , (RecurrenceN)

together with the initial condition F (0, 0) = 1, in other words (EXPLICIT ) is equivalent to
F (m,n) being a solution of the system of (homogeneous) linear-recurrence equations with polyno-
mial coefficients, (RecurrenceM), (RecurrenceN) of the FIRST-ORDER. Can we do something
similar for H(m,n)? Let me remind you that H(m,n) stands for the number of ways of walking
from (0, 0) to (m,n) where the allowed steps are one unit up ((0, 1)), one unit to the right ((1, 0)),
and one unit-diagonal step up ((1, 1)). Of course the partial recurrence equation (ChessKing) is
already some kind of answer, since it enables us, using a computer, to compile a table of H(m,n)
for 0 ≤ m,n ≤ L0 in 3L2

0 operations and roughly O(L2
0) memory (with a slightly less straight-

forward implementation, O(L0) memory suffices), but does H(m,n) satisfy pure recurrences, like
(RecurrenceM) and (RecurrenceN) for F (m,n)?

Now, if you know WZ theory you would know that the answer to the above question is yes. Indeed,
since

H(m,n) = CT
1

(1− x− y − xy)xmyn
,

where CT stands for the “constant term of”, and since the constant-termand is holonomic in
x, y,m, n, WZ theory immediately guarantees that H(m,n) is holonomic in (m,n), which is another
way of saying that H(m,n) satisfies pure recurrences both in the m variable and in n variable, just
like (RecurrenceM) and (RecurrenceN), but not necessarily first-order!. Now WZ theory
not only guarantees the existence of such recurrences, but also has algorithms to find them, but
that’s not the point right now. Let’s forget about WZ theory, and pretend that we are, completely
empirically, trying to find an ‘almost nice’ way of representing H(m,n), but giving up on it being
as nice as the explicit expression ((m+ n)!/(m!n!)) we found for F (m,n). In other words, we will
relax the condition that the pure recurrence equations be first-order.

So let’s be optimistic, and try the ANSATZ of second-order linear recurrence in m with polynomial
coefficients that are of degree 1 in (m,n), using undetermined coefficients:

(c0 + c1m+ c2n)H(m+ 2, n) + (b0 + b1m+ b2n)H(m+ 1, n) + (a0 + a1m+ a2n)H(m,n) = 0 ,

(Hopeful)
where a0, a1, a2, b0, b1, b2, c0, c1, c2 are nine numbers yet to be determined. We want it to be true for
all m,n ≥ 0, so by plugging-in all possible pairs, we get a system of ∞2 =∞ linear equations with
9 unknowns. In practice, of course, it is enough to pick 10 random values, and to be on the safe
side, let’s pick 20 such pairs (m0, n0), plug them into (Hopeful), and solve the system of 20 linear
equations for the 9 unknown numbers a0, a1, a2, b0, b1, b2, c0, c1, c2. Of course, we get the H(m0, n0)
for specific (m0, n0) by using the partial recurrence (ChessKing).

If you have a random system of linear homogeneous equations with more equations than unknowns,
it is extremely unlikely to get a non-zero solution. If you do, it means that you discovered a
conjecture!. In this case, it turns out that a0 = −1, a1 = −1, a2 = 0, b0 = −1, b1 = 0, b2 = −2, c0 =
2, c1 = 1, c2 = 0 is the unique solution (up to a constant multiple, of course) yielding the pure
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recurrence

(m+ 2)H(m+ 2, n)− (2n+ 1)H(m+ 1, n)− (m+ 1)H(m,n) = 0 . (RecurrenceMking)

Similarly, (and in our case, by symmetry),

(n+ 2)H(m,n+ 2)− (2m+ 1)H(m,n+ 1)− (n+ 1)H(m,n) = 0 , (RecurrenceNking) ,

which together with the initial condition H(0, 0) = 1, and the convention that H(m,−1) ≡ 0 and
H(−1, n) ≡ 0 uniquely define H(m,n).

Why is the Pair of Pure Recurrences Better than the Defining Partial-Recurrence?

While the pair of pure recurrences (RecurrenceMking) and (RecurrenceNking) satisfied byH(m,n)
is not quite as ‘nice’ as the pair (RecurrenceM) and (RecurrenceN) satisfied by F (m,n), com-
putationally it is almost as good. For example, to compute H(1000, 2000) you no longer need
3 ·1000 ·2000 operations and to remember 1000 ·2000 facts, but only 2(1000+2000) operations and
to remember that many facts. In fact, of course, in the former case we only need to remember up
to 2(1000 + 2000) values at a time, but in the latter case we only need 2 previous values at a time.

The diagonal recurrence

If you are only interested in the diagonal H(n, n), then you can try to conjecture a recurrence of
the form

p0(n)H(n, n) + p1(n)H(n+ 1, n+ 1) + p2(n)H(n+ 2, n+ 2) = 0 ,

(MainDiagonalRecurrenceAnsatz)
for polynomials in n, p0(n), p1(n), p2(n). Trying out generic polynomials of degree 1 for p0(n), p1(n), p2(n),
and plugging into (MainDiagonalRecurrenceAnsatz), n = 0, 1, . . . 10, (using the numerical values
H(0, 0), . . . ,H(12, 12) obtained from (ChessKing)), yields 11 linear equations for the 6 = 3 ·(1+1)
unknown coefficients, that result in the following conjecture

nH(n, n)− 3(2n+ 1)H(n+ 1, n+ 1) + (n+ 1)H(n+ 2, n+ 2) = 0 . (MainDiagonalRecurrence)

What about a general diagonal? In this case the recurrence is still second-order but the polynomials
q0(m,n), q1(m,n), q2(m,n), that feature as coefficients of the recurrence

q0(m,n)H(m,n) + q1(m,n)H(m+ 1, n+ 1) + q2(m,n)H(m+ 2, n+ 2) = 0 ,

(GeneralDiagonalRecurrenceAnsatz)
turn out to be of degree 3, and doing the analogous linear algebra yields the following diagonal
recurrence

(n+ 1)(m+ 1)(m+n+ 4)H(m,n)− (m+n+ 3)(2n2 + 2nm+ 2m2 + 9n+ 9m+ 12)H(m+ 1, n+ 1)

+(m+ 2)(n+ 2)(m+ n+ 2)H(m+ 2, n+ 2) = 0 . (GeneralDiagonalRecurrence)
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Asymptotics for H(n,n)

Once you have a linear recurrence with polynomial coefficients, the Birkhoff-Trijinski method (see
[WimZ]) tells you how to extract the asymptotics to any desired order. Applying this method to
(MainDiagonalRecurrence), yields

H(n, n) � C(3 + 2
√

2)nn−1/2(1 +
3
√

2− 8
32n

+O(1/n2)) ,

where C is a constant that is approximately 0.571.

How to prove the conjectured recurrences?

If you are skeptical, then you can check these conjectured recurrences not just for the above 20 pairs
(m0, n0), used to generate the conjecture, but for the 10000 pairs (m0, n0) for 0 ≤ m0, n0 ≤ 100, and
this would be overwhelming empirical evidence for their veracity. But it would still not be a proof.
We want to know that (RecurrenceMking) is true for all (m,n) not just for the first billion values.
Recall that in order to prove the ‘nice’ formula (m+n)!/(m!n!) for F (m,n) we plugged G(m,n) :=
(m+n)!/(m!n!) into (Pascal) and verified thatG(m,n) satisfies the analogous recurrenceG(m,n) =
G(m− 1, n) +G(m,n− 1). In the more general case, of higher-order recurrences, this is no longer
possible, since the conjectured ‘nice’ expression is not closed-form, but is defined implicitly by
(RecurrenceMking) and (RecurrenceNking).

What we need is rephrase all our recurrences in operator notation. Introducing the shift-operators

Mf(m,n) := f(m+ 1, n) , Nf(m,n) := f(m,n+ 1) ,

the defining partial-recurrence for H(m,n), Eq. (ChessKing) can be written

(MN −M −N − 1)H(m,n) ≡ 0 , (m ≥ 0, n ≥ 0) , (ChessKingOpe)

[plus we need the initial conditions H(m, 0) = 1, (m ≥ 0), H(0, n) = 1, (n ≥ 0)]. This is our given.
We have to prove

[(m+ 2)M2 − (2n+ 1)M − (m+ 1)]H(m,n) ≡ 0 (m ≥ 0, n ≥ 0) .

Let’s give the operators names:

P := MN −M −N − 1 ,

Q := (m+ 2)M2 − (2n+ 1)M − (m+ 1) .

We have to prove, under the initial conditions, that

PH ≡ 0 ⇒ QH ≡ 0 .

Let’s compute the commutator
Q1 := PQ−QP .
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If it is indeed true that QH ≡ 0 then of course, since PH ≡ 0, we would have Q1H ≡ 0. But also
vice-versa! If it is true that Q1H ≡ 0, then it would follow that P[QH] ≡ 0. So QH is annihilated
by P. Now being annihilated by P is not enough to make a discrete function identically zero, after
all, our original function H(m,n) is annihilated by P, and is not zero. But now we have that
QH(0, 0) is 0, so we have different initial conditions. In fact we can directly see that QH(m,n)
vanishes at m = 0 and n = 0. Since the initial conditions vanish, now being annihilated by P
entails being identically 0. Hence QH(m,n) is identically 0.

It remains to prove that Q1 annihilates H(m,n). But Maple (and in this simple case you can do
it by hand) shows that

Q1 = (M − 1)M(MN −M −N − 1) = (M − 1)MP ,

so the operator Q1 turned out to be a multiple of the operator P, and since, by assumption,
PH ≡ 0, it follows that

Q1H(m,n) = (M − 1)MPH(m,n) ≡ 0 .

QED!

How to prove Recurrence (MainDiagonalRecurrence)?

You can’t prove it directly! We don’t have enough elbow room to apply the inductive approach
of the previous section. As is often the case in mathematics, the more general a statement is, the
easier it is to prove.

What we can do is prove (GeneralDiagonalRecurrence). Let’s use the letter Q once again to
denote this operator:

Q := (n+1)(m+1)(m+n+4)−(m+n+3)(2n2+2nm+2m2+9n+9m+12)MN+(m+2)(n+2)(m+n+2)M2N2 .

Now we need a tower of operators: Q1 := [P,Q], Q2 := [P,Q1], Q3 := [P,Q2]. Since P is a partial
recurrence operator with constant coefficients, its commutator with any linear recurrence operator
with polynomial coefficients whose coefficients are polynomials of degree d, say, is another such
operator but with the coefficients being polynomials of degree d − 1. Since the degree of Q (in
(m,n)) is 3, the degree of Q1 is 2, the degree of Q2 is 1, and the degree of Q3 is 0, i.e. Q3 turns out
to be constant-coefficients and in fact is a left-multiple of P. Hence Q3H = 0 which entails that
Q2H = 0 which entails that Q1H = 0, which finally entails that QH = 0. As before at each stage
we have to check that the initial conditions vanish, but this is routine and capable of automation.

The General Case

All that we said above for the King’s walks applies to the function counting the number of lattice
walks using any finite set of allowed steps, in any number of dimensions (i.e. not just the plane)
and more generally for the discrete function describing the power-series coefficients of any rational
function. It also applies to “ballot-style” walks (i.e. walks that are restricted to stay in m1 ≥
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m2 ≥ . . . ≥ mk ≥ 0 (or even m1 ≥ m2 ≥ . . . ≥ mk ≥ −c for any positive integer c). It can also
do probabilities (if each step is assigned a certain probability), and find recurrences along diagonal
directions.

As above we first use the ‘obvious’, or if you wish, defining partial-recurrence equation with con-
stant coefficients, together with the obvious inital conditions, to crank-out enough values of the
discrete function under investigation. Then we use the holonomic ansatz to guess pure recur-
rences in each discrete variable. Of course if our discrete function is symmetric, we need consider
only one direction.

Also the outline of the proof of the validity of the conjectured recurrences can be done in general,
as well as deducing the asymptotics of the diagonal terms.

The Maple package GuessHolo2

All of the above is implemented in the Maple package GuessHolo2 accompanying this article. It is
available from

http://www.math.rutgers.edu/~zeilberg/tokhniot/GuessHolo2 .

After you downloaded it to your directory, saving it as GuessHolo2, go into Maple, by typing
maple [Enter], and then type read GuessHolo2: and follow the instructions given there. In
particular to get the list of functions type ezra();, and to get help with a specific function type
ezra(FunctionName);. For example, to get help with procedure GH2, type ezra(GH2);.

The Maple package GuessHolo3

The analogous package for lattice “flights”, i.e. walks in the positive three-dimensional cubic lattice,
download

http://www.math.rutgers.edu/~zeilberg/tokhniot/GuessHolo3 .

It also contains most of the functions of GuessHolo2.

What about GuessHolo4, GuessHolo5, . . .?

In principle I should have written just one package, that can handle any dimension, but at this time
of writing, at least with my computer, the general-purpose approach is too slow, and one needs lots
of dirty tricks, specific for small dimensions to make it run in real time. Of course, with more effort
we could have combined them and written a general program, but life is too short to get stuck on
one project. Of course, you are welcome to improve and generalize!

Sample input and output

The webpage of this article
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http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/ansatzI.html,

contains numerous sample output illustrating the power of the packages GuessHolo2 and GuessHolo3.
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