
Factorization of C-finite Sequences

Manuel Kauers∗

Institute for Algebra
Johannes Kepler University

4040 Linz, Austria
manuel.kauers@jku.at

Doron Zeilberger
Department of Mathematics

Rutgers University
New Brunswick, NJ, USA

zeilberg@math.rutgers.edu

ABSTRACT
We discuss how to decide whether a given C-finite sequence
can be written nontrivially as a product of two other C-finite
sequences.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algorithms

General Terms
Algorithms

Keywords
Factorization, Linear Recurrence, Computer Algebra

1. INTRODUCTION
It is well known that when (an)∞n=0 and (bn)∞n=0 are two

sequences that satisfy some linear recurrences with constant
coefficients, then the product sequence (anbn)∞n=0 also sat-
isfies such a recurrence. Sequences satisfying linear recur-
rences with constant coefficients are called C-finite [13, 6,
15], and the fact just refered to is one of several closure
properties that this class of sequences enjoys. In this pa-
per, we will consider the inverse problem: given a C-finite
sequence (cn)∞n=0, can we write it in a nontrivial way as the
product of two other C-finite sequences? This question is of
interest in its own right, but it is also useful some applica-
tions in combinatorics. For example, the celebrated solution
by Kasteleyn-Temperley-Fisher of the dimer problem [2, 5]
as well as the even more celebrated Onsager solution of the
two-dimensional Ising model [7] can be (re)discovered using
an algorithm for factorization of C-finite sequences.

A C-finite sequence is uniquely determined by a recur-
rence and a choice of sufficiently many initial values. The

∗partially supported by FWF grants F50-04 and Y464-N18.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

prototypical example of a C-finite sequence is the Fibonacci
sequence (Fn)∞n=0 defined by

Fn+2 − Fn+1 − Fn = 0, F0 = 0, F1 = 1.

Whether a C-finite sequence (cn)∞n=0 admits a factorization
depends in general on both the recurrence as well as the
initial values. For example, the sequence (3n + 4n + 6n +
8n)∞n=0, which satisfies the recurrence

cn+4 − 21cn+3 + 158cn+2 − 504cn+1 + 576cn = 0,

can be factored as 3n + 4n + 6n + 8n = (1 + 2n)(3n + 4n),
while the sequence 3n + 4n + 6n − 8n, which satisfies the
same recurrence, cannot be factored.

We shall consider a variant of the factorization problem
that does not depend on initial values but only on the re-
currence equations. Linear recurrences may be viewed as
polynomials p = p0 + p1x + · · · + pdx

d ∈ k[x] acting on
sequences (an)∞n=0 via

p · (an)∞n=0 := (p0an + p1an+1 + · · ·+ pdan+d)
∞
n=0.

For every fixed p ∈ k[x], denote by V (p) the set of all se-
quences (an)∞n=0 with p · (an)∞n=0 = (0)∞n=0, i.e., the solution
space of the recurrence equation encoded by p. This is a vec-
tor space of dimension deg(p). For any two operators p, q ∈
k[x] \ {0} there exists a unique monic polynomial r ∈ k[x]
such that V (r) is vector space generated by all sequences
(anbn)∞n=0 with (an)∞n=0 ∈ V (p) and (bn)∞n=0 ∈ V (q), i.e.,
V (r) = V (p)⊗ V (q). We write r = p⊗ q.

Our problem shall be to decide, for a given monic poly-
nomial r ∈ k[x], whether there exist p, q ∈ k[x] such that
r = p⊗q. In principle, it is known how to do this. Singer [8]
gives a general algorithm for the analogous problem for lin-
ear differential operators with rational function coefficients,
the problem is further discussed in [4]. Because of their
high cost, these algorithms are mainly of theoretical inter-
est. For the special case of differential operators of order 3
or 4 (still with rational function coefficients), van Hoeij [12,
11] combines several observations to algorithms which han-
dle these cases efficiently. For the recurrence case, Cha [1]
gives an algorithm for operators of order 3 with rational
function coefficients. An algorithm for the case of constant
coefficients and arbitrary order was recently sketched by the
second author [15]. This description however only considers
the “generic case”. The present paper is a continuation of
this work in which we give a complete algorithm which also
handles “degenerate” cases. Our algorithm is efficient in the
sense that it does not require any Gröbner basis computa-
tion, but inefficient in the sense that it requires a search that
may take exponential time in the worst case.



2. PRELIMINARIES
To fix notation, let us recall the basic facts about C-finite

sequences. Let k be an algebraically closed field.

Definition 1. 1. A sequence (an)∞n=0 is called C-finite,
if there exist p0, . . . , pd ∈ k with p0 6= 0 6= pd such that
for all n ∈ N we have p0an + · · · pdan+d = 0.

2. In this case, the polynomial p = p0 + p1x+ · · ·+ pdx
d

is called a characteristic polynomial for (an)∞n=0.

3. For p ∈ k[x], the set V (p) denotes the set of all C-
finite sequences whose characteristic polynomial is p.
It is called the solution space of p.

Theorem 2. [9, 6] Let p = (x−φ1)e1 · · · (x−φm)em ∈ k[x]
for pairwise distinct φ1, . . . , φm ∈ k \ {0}. Then V (p) is the
k-vector space generated by the sequences

φn1 , . . . , n
e1−1φn1 ,

φn2 , . . . , n
e2−1φn2 ,

. . . . . . . . . ,

φnm, . . . , n
em−1φnm.

It is an immediate consequence of this theorem that for
any two polynomials p, q ∈ k[x] we have V (gcd(p, q)) =
V (p) ∩ V (q) and V (lcm(p, q)) = V (p) + V (q). The lat-
ter says in particular that when (an)∞n=0 and (bn)∞n=0 are
C-finite, then so is their sum (an + bn)∞n=0. A similar re-
sult holds for the product: write p =

∏m
i=1(x − φi)ei and

q =
∏`
j=1(x− ψj)εj and define

r := p⊗ q := lcmm
i=1 lcm`

j=1(x− φiψj)ei+εj−1. (1)

Then r is a characteristic polynomial for the product se-
quence (anbn)∞n=0. Note that deg(p) + deg(q) ≤ deg(r) ≤
deg(p) deg(q) for every p, q ∈ k[x]. Note also that p ⊗ q =
q ⊗ p for every p, q ∈ k[x].

Our goal is to recover p and q from a given r. The problem
is thus to decide whether the roots of a given polynomial
r are precisely the pairwise products of the roots of two
other polynomials p and q. Besides the interpretation as
a factorization of C-finite sequences, this problem can also
be viewed as factorization of algebraic numbers: given some
algebraic number α, specified by its minimal polynomial r,
can we write α = βγ where β, γ are some other algebraic
numbers with respective minimal polynomials p and q.

Trivial decompositions are easy to find: For each r we
obviously have r = r⊗ (x− 1). Moreover, for every nonzero
φ we have (x−φ)⊗(x−φ−1) = (x−1), so we can“decompose”
r into r⊗ (x−φ) and x−φ−1. In order for a decomposition
r = p ⊗ q to be interesting, we have to require that both p
and q have at least degree 2.

Even so, a factorization is in general not unique. Obvi-
ously, if r = p⊗ q is a factorization, then for any nonzero φ
also r =

(
p ⊗ (x − φ)

)
⊗
(
(x − φ−1) ⊗ q

)
. Translated to

sequences, this ambiguity corresponds to the facts that for
every φ 6= 0, both (φn)∞n=0 and (φ−n)∞n=0 are C-finite, and
that a sequence (an)∞n=0 is C-finite iff for all φ 6= 0 the
sequence (anφ

n)∞n=0 is C-finite. But there is even more non-
uniqueness: the polynomial

r = (x− 2)(x+ 2)(x− 3)(x+ 3)

admits the two distinct factorizations

r = (x− 1)(x+ 1)⊗ (x− 2)(x+ 3)

= (x− 1)(x+ 1)⊗ (x− 2)(x− 3)

which cannot be obtained from one another by introducing
factors (x− φ) and (x− φ−1). Our goal will be to compute
a finite list of factorizations from which all others can be
obtained by introducing factors (x− φ)⊗ (x− φ−1).

There is a naive but very expensive algorithm which does
this job when r is squarefree: For some choice n,m of de-
grees, make an ansatz p = (x − φ1) · · · (x − φn) and q =
(x − ψ1) · · · (x − ψm) with variables φ1, . . . , φn, ψ1, . . . , ψm.
Equate the coefficients of r−

∏n
i=1

∏m
j=1(x− φiψj) with re-

spect to x to zero and solve the resulting system of algebraic
equations for φ1, . . . , φn, ψ1, . . . , ψm. After trying all possi-
ble degree combinations n ≥ m ≥ 2 with n+m ≤ deg(r) ≤
nm, either a decomposition has been found, or there is none.

3. THE GENERIC CASE
Typically, when p and q are square-free polynomials and

φ1, . . . , φn 6= 0 are the roots of p and ψ1, . . . , ψm 6= 0 are
the roots of q, then the products φiψj for i = 1, . . . , n, j =
1, . . . ,m will all be pairwise distinct. In this case, r = p⊗ q
will have exactly nm roots, and the factorization problem
consists in recovering φ1, . . . , φn and ψ1, . . . , ψm from the
(known) roots ρ1, . . . , ρnm of r.

As observed in [15], a necessary condition for r to admit
a factorization into two polynomials of respective degrees
n and m is then that there is a bijection π : {1, . . . , n} ×
{1, . . . ,m} → {1, . . . , nm} such that for all j1, j2 we have

ρπ(1,j1)
ρπ(1,j2)

=
ρπ(2,j1)
ρπ(2,j2)

= · · · =
ρπ(n,j1)
ρπ(n,j2)

and for all i1, i2 we have

ρπ(i1,1)
ρπ(i2,1)

=
ρπ(i1,2)
ρπ(i2,2)

= · · · =
ρπ(i1,m)

ρπ(i2,m)

.

The explanation is simply that when a factorization exists,
then the roots ρ` of r are precisely the products φiψj , and
if we define π so that it maps each pair (i, j) to the corre-
sponding root index `, then the quotients

ρπ(i,j1)
ρπ(i,j2)

=
φiψj1
φiψj2

=
ψj1
ψj2

do not depend on i and the quotients

ρπ(i1,j)
ρπ(i2,j)

=
φi1ψj
φi2ψj

=
φi1
φi2

do not depend on j.
In fact, the existence of such a bijection π is also sufficient

for the existence of a factorization: choose φ1 6= 0 arbitrarily
and set ψ1 := ρπ(1,1)/φ1 and

φi := φ1
ρπ(i,1)
ρπ(1,1)

(i = 2, . . . , n)

and

ψj := ψ1
ρπ(1,j)
ρπ(1,1)

(j = 2, . . . ,m).

Then we have ρπ(i,j) = φiψj for all i, j, and therefore for
p = (x − φ1) · · · (x − φn) and q = (x − ψ1) · · · (x − ψm) we
have r = p⊗ q. Note that p and q are squarefree, because if
we have, say, φi1 = φi2 for some i1, i2, and then ρπ(i1,1) =
ρπ(i2,1), and then π(i1, 1) = π(i2, 1), then i1 = i2.



Example 3. 1. Consider r = (x−4)(x−6)(x+6)(x+9),
i.e., ρ1 = 4, ρ2 = 6, ρ3 = −6, ρ4 = −9. A possible
choice for π : {1, 2} × {1, 2} → {1, 2, 3, 4} is given by
the table

π 1 2
1 1 2
2 3 4

(to be read like, e.g., π(2, 1) = 3), because

ρπ(1,2)
ρπ(1,1)

=
ρ2
ρ1

=
6

4
=
−9

−6
=
ρ4
ρ3

=
ρπ(2,2)
ρπ(2,1)

and

ρπ(2,1)
ρπ(1,1)

=
ρ3
ρ1

=
−6

4
=
−9

6
=
ρ4
ρ2

=
ρπ(2,2)
ρπ(1,2)

.

Take φ1 = 15 (for no particular reason), ψ1 = 4
15

,

φ2 = 15 6
4

= 45
2

, ψ2 = 4
15

(−6)
4

= − 2
5

. Then

(x− 15)(x− 45
2

)⊗ (x− 4
15

)(x+ 2
5
)

= (x− 15 4
15

)(x+ 15 2
5
)(x− 45

2
4
15

)(x+ 45
2

2
5
)

= (x− 4)(x+ 6)(x− 6)(x+ 9),

as required.

In this example, no other factorizations exist except
for those that are obtained by replacing p and q by
p⊗(x−ξ) and (x−ξ−1)⊗q for some ξ 6= 0. This degree
of freedom is reflected by the arbitrary choice of φ1.

2. The polynomial (x− 1)(x− 2)(x− 3)(x− 4) cannot be
written as p⊗q for two quadratic polynomials p and q,
because 1

2
6= 3

4
, 1

2
6= 4

3
, 1

3
6= 2

4
, 1

3
6= 4

2
, 1

4
6= 2

3
, 1

4
6= 3

2
.

3. Consider r = (x− 2)(x+ 2)(x− 3)(x+ 3), i.e., ρ1 = 2,
ρ2 = −2, ρ3 = 3, ρ4 = −3. We have seen that in
this case there are two distinct factorizations. They
correspond to the two bijections π, π′ : {1, 2}×{1, 2} →
{1, 2, 3, 4} defined via

(1, 1) (1, 2) (2, 1) (2, 2)
π 1 2 3 4
π′ 1 2 4 3

4. PRODUCT CLASHES
Again let p, q ∈ k[x] be two square-free polynomials, and

write φ1, . . . , φn for the roots of p and ψ1, . . . , ψm for the
roots of q. Generically, the degree of p ⊗ q is equal to
deg(p) deg(q). It cannot be larger than this, and it is smaller
if and only if there are two index pairs (i, j) 6= (i′, j′) with
φiψj = φi′ψj′ . In this case, we say that p and q have a
product clash. Recall from equation (1) that p⊗ q is formed
as the least common multiple of the factors x−φiψj , not as
their product.

Product clashes appear naturally in the computation of
p⊗ p. For example, for p = (x− φ1)(x− φ2) we have

p⊗ p = lcm(x− φ1φ1, x− φ1φ2, x− φ2φ1, x− φ2φ2)

= (x− φ1φ1)(x− φ1φ2)(x− φ2φ2),

because φ1φ2 = φ2φ1 is a clash. More generally, if p is a
square-free polynomial of degree d ≥ 2, then deg(p ⊗ p) ≤
1
2
d(d+ 1) < d2.

As an example that does not come from a product of the
form p ⊗ p, consider p = (x − 1)(x − 2)(x − 4) and q =
(x − 1

2
)(x − 1

4
). Here we have the clashes 1 · 1

2
= 2 · 1

4
and

2 · 1
2

= 4 · 1
4
, so that p ⊗ q = (x − 1

2
)(x − 1

4
)(x − 1)(x − 2)

only has degree 4.
In order to include product clashes into the framework of

the previous section, we need to relax the requirement that
π be injective. We still want it to be surjective, because
every root of r must be produced by the product φψ of
some root φ of p and some root ψ of q. If the φi and the
ψj are defined according to the formulas above, it can now
happen that φi1 = φi2 for some i1 6= i2. We therefore adjust
the definition of p and q to p = lcm(x − φ1, . . . , x − φn),
q = lcm(x − ψ1, . . . , x − ψm). Then p and q are squarefree
and for the set of roots of p⊗ q we obtain

{φiψj : i = 1, . . . , n; j = 1, . . . ,m } = {ρ1, . . . , ρ`},

as desired.

Example 4. 1. To find the factorization (x − φ2
1)(x −

φ1φ2)(x− φ2
2) = (x− φ1)(x− φ2)⊗ (x− φ1)(x− φ2),

set ρ1 = φ2
1, ρ2 = φ1φ2, ρ3 = φ2

2. Then a suitable
choice for π : {1, 2} × {1, 2} → {1, 2, 3} is given by

π 1 2
1 1 2
2 2 3

because

ρπ(1,1)
ρπ(1,2)

=
ρ1
ρ2

=
φ1

φ2
=
ρ2
ρ3

=
ρπ(2,1)
ρπ(2,2)

and

ρπ(1,1)
ρπ(2,1)

=
ρ1
ρ2

=
φ1

φ2
=
ρ2
ρ3

=
ρπ(1,2)
ρπ(2,2)

.

2. Consider r = (x− 1
2
)(x− 1

4
)(x− 1)(x− 2), i.e., ρ1 =

1
2

, ρ2 = 1
4

, ρ3 = 1, ρ4 = 2. A possible choice for
π : {1, 2} × {1, 2, 3} → {1, 2, 3, 4} is

π 1 2 3
1 1 3 4
2 2 1 3

because {ρπ(1,1)
ρπ(1,2)

,
ρπ(2,1)
ρπ(2,2)

}
=
{ρ1
ρ3
,
ρ2
ρ1

}
=
{1

2

}
{ρπ(1,1)
ρπ(1,3)

,
ρπ(2,1)
ρπ(2,3)

}
=
{ρ1
ρ4
,
ρ2
ρ3

}
=
{1

4

}
{ρπ(1,2)
ρπ(1,3)

,
ρπ(2,2)
ρπ(2,3)

}
=
{ρ3
ρ4
,
ρ1
ρ3

}
=
{1

2

}
and{ρπ(1,1)

ρπ(2,1)
,
ρπ(1,2)
ρπ(2,2)

,
ρπ(1,3)
ρπ(2,3)

}
=
{ρ1
ρ2
,
ρ3
ρ1
,
ρ4
ρ3

}
=
{

2
}

5. SEARCHING FOR ASSIGNMENTS
We now turn to the question how for a given r = (x −

ρ1) · · · (x − ρ`) ∈ k[x] we can find a map π as required. Of
course, since ` is finite, there are only finitely many possi-
ble choices for n and m such that n + m ≤ ` ≤ nm, and
for each choice n,m there are only finitely many functions



π : {1, . . . , n} × {1, . . . ,m} → {1, . . . , `}. We can simply try
them all. But going through all these (nm)` many functions
one by one would take very long.

In order to improve the efficiency of the search, we can
exploit the fact that for most partial functions π it is easy
to see that they cannot be extended to a total function with
the required properties. We can further reduce the search
space by taking into account that the order of the roots
of the factors is irrelevant, i.e., we can restrict the search
to functions π with π(1, 1) ≤ π(2, 1) ≤ · · · ≤ π(n, 1) and
π(1, 1) ≤ π(1, 2) ≤ · · · ≤ π(1,m). Furthermore, because of
surjectivity, the root ρ1 must be reached, and we can choose
to set π(1, 1) = 1 without loss of generality. Next, discard
all functions with π(i, j1) = π(i, j2) for some i, j1, j2 with
j1 6= j2 or with π(i1, j) = π(i2, j) for some i1, i2, j with
i1 6= i2, because these just signal some roots of a factor of r
several times without providing any additional information.
So we can in fact enforce 1 = π(1, 1) < π(2, 1) < · · · <
π(n, 1) and π(1, 1) < π(1, 2) < · · · < π(1,m). Next, π is
a solution iff π> : {1, . . . ,m} × {1, . . . , n} → {1, . . . , `} with
π>(i, j) = π(j, i) is a solution. We can therefore restrict the
search to functions where n ≤ m.

The following algorithm takes these observations into ac-
count. It maintains an assignment table M which encodes
a function π : {1, . . . , n} × {1, . . . ,m} → {1, . . . , `} with

ρπ(1,j1)
ρπ(1,j2)

=
ρπ(2,j1)
ρπ(2,j2)

= · · · =
ρπ(n,j1)
ρπ(n,j2)

for all i, j1, j2 and

ρπ(i1,1)
ρπ(i2,1)

=
ρπ(i1,2)
ρπ(i2,2)

= · · · =
ρπ(i1,m)

ρπ(i2,m)

.

for all i1, i2, j. At every recursion level, the candidate under
consideration is extended to a function π with π(n+ 1, 1) =
p for some p. As soon as p is chosen, there is for each
j = 2, . . . ,m at most one choice q ∈ {1, . . . , `} for the value
of π(n + 1, j). The matrix M stores these values q and
marks the indices j for which no q exists with q = 0. The
result is a function {1, . . . , n+ 1} × {1, . . . , m̃} → {1, . . . , `}
for some m̃ ≤ m. If this function is surjective, we have
found a solution. Otherwise, we proceed recursively unless
we already have n+ 1 = m̃, because in this case any further
extension could only produce transposes of solutions that
will be found at some other stage of the search.

INPUT: The roots ρ1, . . . , ρ` of some square-free polynomial
r ∈ k[x].
OUTPUT: A list of functions π as required for solving the
factorization problem.

1 let M = ((M [i, j]))`i,j=1 be a matrix with M [1, j] = j for
j = 1, . . . , `.

2 call the procedure addRow(M, 2) as defined below.

3 stop.

4 procedure addRow(M,n)

5 for p = M [n− 1, 1] + 1, . . . , ` do:

6 set the nth row of M to (p, 0, . . . , 0) and let J be
the empty list

7 for j = 2, . . . , ` do:

8 if M [n − 1, j] 6= 0 and there exists q ∈ {1, . . . , `}
such that ρ1/ρp = ρj/ρq and ρ1/ρj = ρp/ρq

9 set M [n, j] = q and append j to J

10 if {M [i, j] : i = 1, . . . , n; j ∈ J} = {1, . . . , `} then:

11 report the solution π : {1, . . . , n}×{1, . . . , |J |} →
{1, . . . , `} with π(i, j) = M [i, J [j]] for all i, j.

12 else if |{j : M [n, j] 6= 0}| < n then

13 recursively call the procedure addRow(M,n+ 1)

In the interest of readability, we have refrained from some
obvious optimizations. For example, an actual implemen-
tation might perform some precomputation in order to im-
prove the search for q in Step 8.

Example 5. Let r = (x − ρ1) · · · (x − ρ6) where ρ1 = −8,
ρ2 = −6, ρ3 = −4, ρ4 = −3, ρ5 = −2, ρ6 = −1.

After initialisation, at the first level of the recursion, there
are five choices for the first entry in the second row of M .
Each of them uniquely determines the rest of the row, as
follows (writing · for 0):

(
1 2 3 4 5 6
2 · 4 · · ·

)
,(

1 2 3 4 5 6
3 4 5 · 6 ·

)
,(

1 2 3 4 5 6
4 · · · · ·

)
,(

1 2 3 4 5 6
5 · 6 · · ·

)
,(

1 2 3 4 5 6
6 · · · · ·

)
.

The second of these matrices corresponds to a solution

π : {1, 2} × {1, 2, 3, 4} → {1, 2, 3, 4, 5, 6},

which gives rise to the factorization

r = (x− 1)(x− 1
2
)⊗ (x+ 8)(x+ 6)(x+ 4)(x+ 2),

while the other partial solutions cannot be continued to fur-
ther solutions.

6. MULTIPLE ROOTS
Let us now drop the condition that r ∈ k[x] is square

free. Write r∗ for the square free part of r. It is clear
from equation (1) that when p, q ∈ k[x] are such that r =
p ⊗ q, then r∗ = p∗ ⊗ q∗, where p∗, q∗ denote the square
free parts of p and q, respectively. It is therefore natural
to first determine factorizations of the square free part r∗

of r and in a second step obtain p and q from p∗ and q∗

(if possible) by assigning appropriate multiplicities to their
roots. As the multiplicities in p or q cannot exceed those
in r, there are again just finitely many candidates and we
could simply try them all. And again, the search can be
improved because many possibilities can be ruled out easily.
In fact, the freedom for the multiplicities is so limited that
we can compute them rather than search for them.

First consider the case when p∗ and q∗ were obtained from
an injective map π, i.e., the case when there are no product
clashes. In this case, each root ρ` of r∗ corresponds to ex-
actly one product φiψj of a root φi of p∗ and a root ψj of q∗.
The multiplicities ei of φi in p and εj of ψj in q, respectively,
must be such that ei + εj − 1 equals the multiplicity of ρ`
in r. This gives a linear system of equations. Every solution
of this system in the positive integers gives rise to a factor-
ization for r, and if there is no solution for the linear system



of any of the factorizations of the square-free part r∗, then
r admits no factorization.

When there are product clashes, there are roots ρ of r
which are obtained in several distinct ways as products of
roots of p and q, for instance ρ = φi1ψj1 = φi2ψj2 for
some (i1, j1) 6= (i2, j2). If m is the multiplicity of ρ in r,
then the requirement for the multiplicities ei1 , ei2 , εj1 , εj2 of
φi1 , φi2 , ψj1 , ψj2 in p and q, respectively, is that

max(ei1 + εj1 − 1, ei2 + εj2 − 1) = m.

We obtain a system of such equations, one equation for reach
root of r. Such systems are known as tropical linear systems,
and algorithms are known for finding their solutions in poly-
nomial time [3].

Example 6. 1. Let r = (x− 2)(x+ 2)2(x− 3)2(x+ 3)3.
We have seen earlier that the square free part r∗ of r
admits two distinct factorizations

r∗ = (x− 1)(x+ 1)⊗ (x− 2)(x+ 3)

= (x− 1)(x+ 1)⊗ (x− 2)(x− 3).

Assigning multiplicities to the first, we get

(x− 1)e1(x+ 1)e2 ⊗ (x− 2)ε1(x+ 3)ε2

= (x+2)e1+ε1−1(x−3)e1+ε2−1(x−2)e2+ε1−1(x+3)e2+ε2−1.

Comparing the exponents to those of r gives the linear
system

e1 + ε1 − 1 = 2, e1 + ε2 − 1 = 2,

e2 + ε1 − 1 = 1, e2 + ε2 − 1 = 3,

which has no solution. For the second factorization,
we get

(x− 1)e1(x+ 1)e2 ⊗ (x− 2)ε1(x− 3)ε2

= (x+2)e1+ε1−1(x+3)e1+ε2−1(x−2)e2+ε1−1(x−3)e2+ε2−1.

Comparing the exponents to those of r gives the linear
system

e1 + ε1 − 1 = 2, e1 + ε2 − 1 = 3,

e2 + ε1 − 1 = 1, e2 + ε2 − 1 = 2,

whose unique solution in the positive integers is e1 = 2,
e2 = 1, ε1 = 1, ε2 = 2, thus

r = (x− 1)2(x+ 1)⊗ (x− 2)(x− 3)2.

2. Let r = (x − 1
2
)2(x − 1

4
)(x − 1)2(x − 2)3. We have

seen earlier that the square free part r∗ of r admits the
factorization

r∗ = (x− 1
2
)(x− 1

4
)⊗ (x− 1)(x− 2)(x− 4).

Assigning multiplicities to the factors, we get

(x− 1
2
)e1(x− 1

4
)e2 ⊗ (x− 1)ε1(x− 2)ε2(x− 4)ε3

= (x− 1
2
)max(e1+ε1−1,e2+ε2−1)

(x− 1)max(e1+ε2−1,e2+ε3−1)

(x− 2)e1+ε3−1(x− 1
4
)e2+ε1−1.

Comparing the exponents to the exponents of the fac-
tors of r gives a tropical linear system in the unknowns

e1, e2, ε1, ε2, ε3, which turns out to have two solutions.
They correspond to the two factorizations

r = (x− 1
2
)2(x− 1

4
)⊗ (x− 1)(x− 2)(x− 4)2

= (x− 1
2
)2(x− 1

4
)⊗ (x− 1)(x− 2)2(x− 4)2

7. LINEAR COMBINATIONS OF FACTOR-
IZATIONS

For almost all polynomials r ∈ k[x] there does not exist a
factorization. When no factorization exists, we may wonder
whether r admits a decomposition of a more general type.
For example, we can ask whether there exist polynomials
p1, p2, q1, q2 of degree at least two such that

r = lcm(p1 ⊗ q1, p2 ⊗ q2).

Translated to the language of C-finite sequences, this means
that we seek to write a given C-finite sequence (an)∞n=0 as

an = bncn + unvn

for C-finite sequences (bn)∞n=0, (cn)∞n=0, (un)∞n=0, (vn)∞n=0,
none of which should satisfy a first-order recurrence in order
to make the problem nontrivial.

It is not difficult to adapt the algorithm in Section 5 so
that it can also discover such factorizations. Suppose that r
is squarefree. Then, instead of searching for a single surjec-
tive map

π : {1, . . . , n} × {1, . . . ,m} → {1, . . . , `},

it suffices to find two functions

π1 : {1, . . . , n1} × {1, . . . ,m1} → {1, . . . , `}
π2 : {1, . . . , n2} × {1, . . . ,m2} → {1, . . . , `}

satisfying the same conditions previously requested for π
but with surjectivity replaced by imπ1 ∪ imπ2 = {1, . . . , `}.
Once two such maps π1, π2 have been found, we can con-
struct p1, p2, q1, q2 by choosing φ1

1 and φ2
1 arbitrarily, setting

ψ1
1 = ρπ1(1,1)/φ

1
1, ψ2

1 = ρπ2(1,1)/φ
2
1 and

φ1
i = φ1

1

ρπ1(i,1)

ρπ1(1,1)

, ψ1
j = ψ1

1

ρπ1(1,j)

ρπ1(1,1)

,

φ2
i = φ2

1

ρπ2(i,1)

ρπ2(1,1)

, ψ2
j = ψ2

1

ρπ2(1,j)

ρπ2(1,1)

for all i, j in question. Then p1 :=
∏n1
i=1(x − φ1

i ), q1 :=∏m1
i=1(x− ψ1

j ), p2 :=
∏n2
i=1(x− φ2

i ), q2 :=
∏m2
i=1(x− ψ2

j ), are
such that r = lcm(p1 ⊗ q1, p2 ⊗ q2).

In order to search for a pair π1, π2, we can search for
π1 very much like we searched for π before, and for each
partial solution encountered during the recursion, initiate a
search for another function π2 which is required to hit all
the indices 1, . . . , ` not hit by the partial solution π1. Note
that it is fine if some indices are hit by both π1 and π2. The
suggested modification amounts to replacing lines 12 and 13
of the algorithm from Section 5 by the following:

12 else

13 let Q = {M [i, j] : i = 1, . . . , n; j ∈ J}.
14 let M2 be an ` × `-matrix with (1, . . . , `) as first

row.

15 call the procedure addRow2(M2, 2, Q) defined be-
low.

16 for each function π2 it reports, report (π, π2).



17 if no π2 is found and |{j : M [n, j] 6= 0}| < n then

18 recursively call addRow(M,n+ 1)

19 procedure addRow2(M,n,Q)

20 [lines 5–9 literally as in the definition of addRow]

21 if {1, . . . , `} \ Q ⊆ {M [i, j] : i = 1, . . . , n; j ∈ J}
then:

22 [line 11 literally as in the definition of addRow]

23 else if |{j : M [n, j] 6= 0}| < n then

24 recursively call addRow2(M,n+ 1, Q).

This settles the case of square free input. The extension
to arbitrary polynomials is like in the previous section. For
every factorization of the square free part we can assign
variables for the multiplicities of all the roots and compare
the resulting multiplicities for lcm(p1 ⊗ q1, p2 ⊗ q2) to those
of r. This gives again a tropical linear system of equations
which can be solved with Grigoriev’s algorithm [3].

Example 7. The polynomial r = (x− 1)(x− 2)(x− 3)(x−
4)(x − 6)(x − 12) cannot be written as r = p ⊗ q for some
p, q ∈ k[x]. However, we have the representation

r = lcm(p1 ⊗ q1, p2 ⊗ q2)

for

p1 = (x− 1)(x− 2), p2 = (x− 1)(x− 3),

q1 = (x− 2)(x− 3), q2 = (x− 1)(x− 4).

Note that the roots 3 and 4 of r are produced by both p1⊗ q1
and p2 ⊗ q2.

8. EXAMPLES
Our main motivation for studying the factorization prob-

lem for C-finite sequences are two interesting identities that
can be interpreted as such factorizations. They both origi-
nate from the transfer matrix method.

The first is a tiling problem studied in [5, 2], and more
recently in [14]. Given a rectangle of size m×n, the question
is in how many different ways we can fill it using tiles of size
2× 1 or 1× 2. If n and m are even, it turns out that

Tn,m = 2nm/2
m/2∏
i=1

n/2∏
j=1

(
z2 cos2

( iπ

m+ 1

)
+ z2 cos2

( jπ

n+ 1

))
is a bivariate polynomial in the variables z , z where the co-
efficient of a monomial zuzv is exactly the number of tilings
of the m× n rectangle that uses exactly u tiles of size 2× 1
and v tiles of size 1 × 2. The transfer matrix method can
be used to prove this result automatically for every fixed m
and arbitrary n (or vice versa). For every fixed choice of m
(say), it delivers a polynomial r which encodes a recurrence
for (Tn,m)∞n=0. For every fixed i ∈ {1, . . . ,m}, the sequence

2n/2
n∏
j=1

(
z2 cos2

( iπ

m+ 1

)
+ z2 cos2

( jπ

n+ 1

))
=

1

w
znTn(

√
w) +

(
1− 1

w

)
znUn(

√
w)

with w = 1+
(
z
z

cos( iπ
m+1

)
)2

and Tn and Un the Chebyshev
polynomials of the first and second kind, is C-finite with
respect to n. An annihilating polynomial is

pi = x2 − 2
(
z2 + 2z2 cos2

(
iπ

2m+1

))
x+ z4.

The formula for Tn,m can be proven for each particular
choice of m and arbitrary n by checking r = p1 ⊗ · · · ⊗ pm
and a comparing the first 2m initial terms. While the stan-
dard algorithms can confirm the correctness of some con-
jectured factorization p1, . . . , pm, the algorithm described in
the present paper can help discover the factorization in the
first place, taking only r as input. Fisher, Temperly [2] or
Kasteleyn [5] would probably have found it useful back in
the 1960s to apply the algorithm to m = 2, 4, 6, 8, 10 and to
detect the general pattern from the outputs.

The second identity has a similar nature. It describes the
Ising model on an n×m grid wrapped around a torus [7, 10].
Starting from a certain model in statistical physics that we
do not want to explain here, the transfer matrix method pro-
duces for every fixed m ∈ N an annihilating polynomial r of
degree 2m for a certain C-finite sequence in n. The asymp-
totic behaviour of this sequence for n→∞ is of interest. In
view of Theorem 2, it is goverend by the root of r with the
largest absolute value. Onsager discovered that this largest
root of r is equal to

(2 sinh(2ν))m/2 exp
(
1
2
(γ1 + γ3 + · · ·+ γ2m−1)

)
where ν is some physical constant and γk is defined as

γk = arccosh
(
cosh(2ν) coth(2ν)− cos(πk

m
)
)

for k = 1, 3, . . . , 2m− 1 (compare eq. (5.1) in [10]).
Let us translate these formulas to a more familiar form.

First note that because of periodicity and symmetry of the
cosine, we have γk = γ2m−k for k = 1, 3, . . . . Hence each of
the γk in the argument exp appear twice, except the middle
term γm, which only appears for odd m. Set z = exp(ν) and
xk = exp(γk) for k = 1, 3, . . . , 2m − 1. Then 2 sinh(2ν) =
z2 − z−2, and Onsager’s expression for the largest root of r
simplifies to{

(z2 + z−2)m/2x1x3 · · ·xm−1 if m is even

(z2 + z−2)(m−1)/2(1 + z2)x1x3 · · ·xm−1 if m is odd.

For the second case we have used
√

(z2 + z−2)xm = 1 + z2.
The equation for γk says that xk is a root of

pk := x2 +
(

2 cos(πk
m

)− (z4 + 1)2

(z4 − 1)z2

)
x+ 1.

Set q = x − (z2 − z−2)m/2 when m is even and set q =

x−(z2−z−2)(m−1)/2(1+z2) when m is odd. Then Onsager’s
formula says that the largest root of r is equal to the largest
root of q ⊗ p1 ⊗ p3 ⊗ · · · ⊗ pm−1.

In fact, the polynomial q⊗ p1⊗ p3⊗ · · · ⊗ pm−1 ∈ Q(z)[x]
turns out to be exactly the irreducible factor of r ∈ Q(z)[x]
corresponding to the largest root of r. Therefore, our al-
gorithm applied to this irreducible factor of r could have
helped Onsager discover his formula.

9. REFERENCES
[1] Yongjae Cha. Closed form solutions of lienar difference

equations in terms of symmetric products. Journal of
Symbolic Computation, 60:62–77, 2014.

[2] M. Fisher and H. Temperley. Dimer problems in
statistical mechanics–an exact result. Philos. Mag.,
6:1061–1063, 1961.

[3] Dima Grigoriev. Complexity of solving tropical linear
systems. Computational Complexity, 22:71–88, 2013.



[4] Sabrina Hessinger. Computing Galois Groups of
Linear Differential Equations of Order Four. PhD
thesis, North Carolina State University, 1997.

[5] P. W. Kasteleyn. The statistics of dimers on a lattice:
I. the number of dimer arrangements in a quadratic
lattice. Physica, 27:1209–1225, 1961.

[6] Manuel Kauers and Peter Paule. The Concrete
Tetrahedron. Springer, 2011.

[7] Lars Onsager. Crystal statistics, I. a two-dimensional
model with an order-disorder transition. Physical
Review, 65:117–149, 1944.

[8] Michael F. Singer. Solving homogeneous linear
differential equations in terms of second order linear
differential equations. American Journal of
Mathematics, 107(3):663–696, 1985.

[9] Richard P. Stanley. Enumerative Combinatorics,
Volume 2. Cambridge Studies in Advanced
Mathematics 62. Cambridge University Press, 1999.

[10] Colin J. Thompson. Mathematical Statistical
Mechanics. Princeton University Press, 1972.

[11] Mark van Hoeij. Decomposing a 4th order linear
differential equation as a symmetric product. Banach
Center Publications, 58:89–96, 2002.

[12] Mark van Hoeij. Solving third order lienar differential
equations in terms of second order equations. In
Proceedings of ISSAC’07, pages 355–360, 2007.

[13] Doron Zeilberger. A holonomic systems approach to
special function identities. Journal of Computational
and Applied Mathematics, 32:321–368, 1990.

[14] Doron Zeilberger. CounTilings. The Personal Journal
of Shalosh B. Ekhad and Doron Zeilberger, 2006.

[15] Doron Zeilberger. The C-finite ansatz. The
Ramanujan Journal, 31(1):23–32, 2013.


	Introduction
	Preliminaries
	The Generic Case
	Product Clashes
	Searching for Assignments
	Multiple Roots
	Linear Combinations of Factorizations
	Examples
	References

