SOLUTION TO PROBLEM #11850 OF THE MONTHLY

TEWODROS AMDEBERHAN TAMDEBER@TULANE.EDU

Problem #11850. Proposed by Zafar Ahmed, Bhabha Atomic Research Center, Mumbai, India. Let A_n be the function given by

$$A_n(x) = \sqrt{\frac{2}{\pi}} \frac{1}{n!} (1+x^2)^{n/2} \frac{d^n}{dx^n} \left(\frac{1}{1+x^2}\right).$$

Prove that for nonnegative integers m and n, $\int_{-\infty}^{\infty} A_m(x)A_n(x)dx = \delta(m, n)$, where $\delta(m, n) = 1$ if m = n, and otherwise $\delta(m, n) = 0$.

Proof. Solution by Tewodros Amdeberhan, Tulane University and Shalosh B. Ekhad, Rutgers Unviversity, NJ, USA. Convert the differentiation into a contour integral (about a small circle centered at z = x) so that

$$A_n(x) = \int_C F_n(z, x) dz$$
, where $F_n(z, x) = \frac{(1+x^2)^{n/2}}{(1+z^2)(z-x)^{n+1}}$.

Apply the Almkvist-Zeilberger algorithm which provides

(1)
$$\sqrt{x^2 + 1}F_{n+2}(z, x) + 2xF_{n+1}(z, x) + \sqrt{x^2 + 1}F_n(z, x) = \frac{d}{dz}\left(\frac{-(1+z^2)\sqrt{x^2 + 1}}{n+1}F_n(z, x)\right).$$

Consequently, contour integration on both sides shows $A_n(x)$ to satisfy the three-term recurrence

$$\sqrt{x^2 + 1}A_{n+2}(x) + 2xA_{n+1}(x) + \sqrt{x^2 + 1}A_n(x) = 0$$

since the contour integral on the right-hand side of equation (1) is evidently 0. This implies a recurrence for $B(n,m) := \int_{\mathbb{R}} A_n(x)A_m(x)dx$ that is also satisfied by $\delta(m,n)$, and the same initial conditions. Or, make the substitution $y = \frac{x}{\sqrt{x^2+1}}$ to transform $A_n(x)$ into the familiar Chebyshev polynomials of the 2^{nd} -kind $U_n(y)$ and $\int_{\mathbb{R}} A_n(x)A_m(x)dx = \frac{2}{\pi} \int_{-1}^1 U_n(y)U_m(y)\sqrt{1-y^2} dy = \delta(m,n)$. The proof follows. \Box

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!\mathrm{E}}\!X$