SOLUTION TO PROBLEM \#11850 OF THE MONTHLY

Tewodros Amdeberhan
TAMDEBER@TULANE.EDU

Problem \#11850. Proposed by Zafar Ahmed, Bhabha Atomic Research Center, Mumbai, India. Let A_{n} be the function given by

$$
A_{n}(x)=\sqrt{\frac{2}{\pi}} \frac{1}{n!}\left(1+x^{2}\right)^{n / 2} \frac{d^{n}}{d x^{n}}\left(\frac{1}{1+x^{2}}\right)
$$

Prove that for nonnegative integers m and $n, \int_{-\infty}^{\infty} A_{m}(x) A_{n}(x) d x=\delta(m, n)$, where $\delta(m, n)=1$ if $m=n$, and otherwise $\delta(m, n)=0$.
Proof. Solution by Tewodros Amdeberhan, Tulane University and Shalosh B. Ekhad, Rutgers Unviversity, NJ, USA. Convert the differentiation into a contour integral (about a small circle centered at $z=x$) so that

$$
A_{n}(x)=\int_{C} F_{n}(z, x) d z, \quad \text { where } \quad F_{n}(z, x)=\frac{\left(1+x^{2}\right)^{n / 2}}{\left(1+z^{2}\right)(z-x)^{n+1}}
$$

Apply the Almkvist-Zeilberger algorithm which provides

$$
\begin{equation*}
\sqrt{x^{2}+1} F_{n+2}(z, x)+2 x F_{n+1}(z, x)+\sqrt{x^{2}+1} F_{n}(z, x)=\frac{d}{d z}\left(\frac{-\left(1+z^{2}\right) \sqrt{x^{2}+1}}{n+1} F_{n}(z, x)\right) \tag{1}
\end{equation*}
$$

Consequently, contour integration on both sides shows $A_{n}(x)$ to satisfy the three-term recurrence

$$
\sqrt{x^{2}+1} A_{n+2}(x)+2 x A_{n+1}(x)+\sqrt{x^{2}+1} A_{n}(x)=0
$$

since the contour integral on the right-hand side of equation (1) is evidently 0 . This implies a recurrence for $B(n, m):=\int_{\mathbb{R}} A_{n}(x) A_{m}(x) d x$ that is also satisfied by $\delta(m, n)$, and the same initial conditions. Or, make the substitution $y=\frac{x}{\sqrt{x^{2}+1}}$ to transform $A_{n}(x)$ into the familiar Chebyshev polynomials of the $2^{n d}$-kind $U_{n}(y)$ and $\int_{\mathbb{R}} A_{n}(x) A_{m}(x) d x=\frac{2}{\pi} \int_{-1}^{1} U_{n}(y) U_{m}(y) \sqrt{1-y^{2}} d y=\delta(m, n)$. The proof follows.

