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Abstract: In their recent claimed computer-free proof of the Four Color Theorem, David Jackson

and Bruce Richmond attempted to use sophisticated “asymptotic analysis” to explicitly compute a

certain number whose positivity (according to them) implies this famous theorem. While the jury is

still out whether their valiant attempt holds water, we prove, in this modest note, that this constant

equals exactly 10/27. We also point out that their evaluation of this constant must be erroneous,

for two good reasons. Finally, as an encore, we state many similar, but more complicated, results.

David Jackson and Bruce Richmod recently made a brave attempt [JR] to give a human-generated

proof of the Four Color (or as they would spell it, Colour) Theorem. They relied heavily on Tutte’s

seminal paper [T]. An important part was their (correct) theorem stated below (equivalent to

Theorem 9 of [JR]).

(We follow their convention of denoting the coefficient of xn in the formal power series f(x) by

[xn]f(x).)

Theorem: Let g(x) be the formal power series

g(x) =
∑
n≥1

2 (4n + 1)!

(n + 1)!(3n + 2)!
xn ,

then there exists a positive constant, let’s call it c, such that

lim
n→∞

[xn](g(x))2

[xn]g(x)
= c .

However, as we will show below, their determination of that constant c must be erroneous.

It turns out that this constant, c, that may be christened the Jackson-Richmond 4CT constant,

has a nice explicit expression as a good old rational number.

Fact: c = 10
27 .

In fact, we can do more than just asymptotics. We can actually state the exact expression for that

ratio, as a rational function of n, and sketch two proofs.

Lemma: For all integers n ≥ 1, we have:

[xn](g(x))2

[xn]g(x)
=

10(n− 1)(n2 + 14n + 12)

3(3n + 5)(3n + 4)(n + 2)
.

Sketch of First Proof: the top of the left side is a certain terminating hypergometric sum, and

dividing by [xn]g(x), alias 2(4n+1)!
(n+1)!(3n+2)! , is still such a sum, and the Zeilberger algorithm [Z] finds
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a linear recurrence equation (second-order in fact) satisfied by it. That same recurrence happens

to also hold for the right side, and checking the initial conditions at n = 1 and n = 2 concludes the

proof. .

Sketch of Second Proof: Below we will exhibit a degree 4 algebraic equation satisfied by g(x).

Hence g(x)2 satisfies another algebraic equation of degree 4. From this using the standard tools

described below, one can deduce a differential equation, and in turn, a recurrence satisfied by the

coefficients of g(x)2, that is also satisfied by the right side of the lemma times [xn]g(x). .

Critique of section 2.2 of [JR]

In Eq. (13) of [JR], they needed to evaluate A := g( 27
256 ), but failed to give its exact value, that

happens to be 5
27 . In fact the formal power series g(x) (that happens to also be a convergent power

series for |x| ≤ 27
256 ) satisfies the algebraic equation:

x
(
x2 + 11x− 1

)
+
(
4x3 + 25x2 − 14x + 1

)
g(x)+x

(
6x2 + 17x + 3

)
g(x)

2
+x2 (4x + 3) g(x)

3
+x3g(x)

4
= 0 .

Once guessed, it is easily confirmed using, Salvy and Zimmermann’s [SZ] Maple package gfun,

specifically the commands gfun[algeqtodiffeq] followed by gfun[diffeqtorec], and then veri-

fying that the sequence {2 (4n+1)!
(n+1)!(3n+2)!} also satisfies this recurrence.

Plugging-in x = 27
256 , and solving for g( 27

256 ), gives the exact value A = 5
27 .

In [JR], c is given as 27
2

√
3
2 · A · B, where B = 16

27

√
3
2π . Since the latter, thanks to Ferdinand von

Lindemann, is transcendental, and we just exhibited both A and c as rational numbers, the [JR]

value must be erroneous. Another good reason why it can’t be right, as stated (of course they may

be some minor misprints that we were unable to correct), is that in [JR], c evaluates to 1.253754 . . .,

and of course while c is positive (as we proved above), it can’t be larger than 1.

Encore

The beauty of symbolic computation is that with barely extra effort, we can do much more! Using

the Maple package Jackmond.txt accompanying this article available from

https://sites.math.rutgers.edu/~zeilberg/tokhniot/Jackmond.txt,

we discovered the next lemma.

A More general Lemma: For all integers n ≥ 1, and r ≥ 2, define

Ar(n) :=
[xn](g(x))r

[xn]g(x)
,

and

Br := lim
n→∞

Ar(n) .
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We have (as above)

A2(n) =
10(n− 1)(n2 + 14n + 12)

3(3n + 5)(3n + 4)(n + 2)
.

B2 =
10

27
.

We also have

A3(n) =
5 (n− 1) (n− 2)

(
5n4 + 160n3 + 1803n2 + 3768n + 2016

)
3 (3n + 8) (3n + 5) (3n + 7) (3n + 4) (n + 3) (n + 2)

;

B3 =
25

243
;

A4(n) =
20 (n− 1) (n− 2) (n− 3)

(
25n6 + 1350n5 + 31495n4 + 347406n3 + 1211092n2 + 1580304n + 665280

)
27 (3n + 11) (3n + 8) (3n + 5) (3n + 10) (3n + 7) (3n + 4) (n + 4) (n + 3) (n + 2)

;

B4 =
500

19683
.

To see Ar(n) for 5 ≤ r ≤ 11 look at the output file

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oJackmond1.txt .

The list of the Br for 2 ≤ r ≤ 11 is[
10

27
,

25

243
,

500

19683
,

3125

531441
,

6250

4782969
,

109375

387420489
,

625000

10460353203
,

390625

31381059609
,

19531250

7625597484987
,

107421875

205891132094649

]
,

and in decimals

[0.3703703704, 0.1028806584, 0.02540263171, 0.005880238822, 0.001306719738, 0.0002823159928,

0.00005974941647, 0.00001244779510, 0.000002561274712, 0.0000005217411450] .

If you want to see data all the way to r = 18, feel free to look at

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oJackmond1a.txt .

Enjoy!

Moral: Before posting your next paper publicly, make sure to do some fact-checking using our

beloved silicon servants (soon to become our masters). While, who knows?, perhaps one day, we

won’t need them to prove the Four Color Theorem, since either the [JR] attempt, once corrected,

would succeed, or some future smart humans would do it, we can still use computer-kind for the

mundane task of checking our calculations, and confirming our logical arguments, before we go

public.
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