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Abstract: Using ideas of Jet Wimp and Richard McIntosh, it is proved that Gauss’s explicit
evaluation of 5 F}(a,b;c;1) cannot be generalized to 2F}(a,b;c;x), for arbitrary a,b,c, and z. A
short proof of Wimp’s theorem that asserts that 3Fs(a,b,c;d,e;1) cannot be expressed in closed
form is also given.

0 Introduction

As we all know, a geometric series is a series

4, (1)

k=0

such that the ratio Ax41/Axk of consecutive terms is identically equal to a constant, say r, and if
r < 1, such a series is ezplicitly summable, the sum being Ay/(1 — 7).

A hypergeometric series (e.g. [R], [B]) is a series (1) where Ay,1/Ay is a rational function of k.

Writing this rational function in factored form

z(k + a1)(k + a2)...(k + ap)
(k+1)(k+b1)(k +b2)...(k + by)

(2)

the resulting series (1) (with Ag = 1) is denoted by

ai,-.., Qp
F .
P q(bl, wes by
(The extra factor (k + 1) in the denominator of (2) is there for historical reasons, of course it is
possible to get rid of it by making one of the numerator parameters a; equal to 1.) In terms of the
raising factorial (a)g := a(a + 1)...(a + k — 1), the general hypergeometric series can be written,
and is usually defined by

ai, . = (al)k
qu(bl, Z k'(bl)k ) TSR
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There are many cases in which a hypergeometric series can be summed ”explicitly”, i.e. in terms
of powers and products of Gamma functions. The simplest case is the binomial theorem:

Fo(Lsa) = (1-a)7". (3)
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Moving up to 2 F;, we have Gauss’s celebrated formula(e.g. [R], theorem 18, p.49):

a,b

S ( ’ T'(c)T'(c—a—b)

D= Te—are=p)

(4)

Despite many attempts, no such formula for F(a, b; c; ), with general z and general a, b, c was ever
found, and the first purpose of the present paper is to prove that such a formula is impossible. Of
course, for various specializations of z and a, b, ¢ there do exist closed form formulas([B],[G-S]), the
most well known being that of Kummer, in which z = —1 and ¢ = a — b + 1([R], Theorem 26, p.
68):

a,b
l1+a—-10’

I'(1+a—bT(1+a/2)

—b = T(1+a/2-bI(1+a)
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Another natural generalization of Gauss’s formula would be an explicit expression for the general

a1,0a2,0a3 A

3F( by, by ;1) . (6)

The celebrated formula of Pfaff-Saalschutz sums (6) ([R], p. 87) when one of the numerator
parameters is a negative integer (so the series is terminating) and in addition it is balanced:
ai + az + az +1 = by + by. This gives a four-parameter formula. The formula of Dixon([R],
p. 92) sums (6) when it is well-poised: a3 +1 = by + aa = by + a3, giving a 3-parameter for-
mula. Other 3-parameter formulas are associated with the names of Watson and Whipple (see
[B]). In addition there are many ”strange” 2- and 1l-parameter formulas conjectured by Gosper
and proved by Gessel and Stanton|[G-S]. The impossibility of a closed form evaluation of a general
3Fy(a,b,c;d, e;1) is a remarkable result due to Wimp[W]. Wimp used recurrences and an ingenious
asymptotic argument. The second purpose of this paper is to give a short proof of Wimp’s theo-
rem. My proof uses Wimp’s beautiful ideas, but the details are much shorter. I was also very much
influenced by McIntosh’s brilliant thesis[M| and his approach to proving minimality of recurrences.

1 3Fi(a,b;c;x) Is Not Nice
Theorem: There is no formula of the form

?:1 I‘(Aja + ij + CjC + DJ)

) — KAA0a+Bob+Coch ’
T T(Aa+ Blb+ Clo+ D))

2Fi(a, b5,
with A(], Al, ey Ap, B(), Bl, “eey Bp, C(), Cl, “eey Cp’ A{l’ “eey A:I’ B(l), Bi, ey B(IJ, Ci, ey C,
all rational numbers, and K and A are allowed to depend on z.

Proof: Suppose there is such a formula, then there would be a formula for

of the form



an) = Feyton Lt [ + Do)
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with Ay, A;, and A;- rational numbers. Let K be the least common denominator of Ay, A4;, A;-.Then
obviously a(n + K)/a(n) would be a rational function of n, i.e., there would be polynomials P(n)
and Q(n) such that

P(n)a(n + K) — Q(n)a(n) =0, n=0,1,2... . (10)

Note that P(n) and Q(n) can be chosen to have integer coefficients, since a(n) are integers, and
writing P(n) and @(n) in generic form, plugging in the first few values of n, and solving the resulting
system of linear equations, gives rational, and hence integer, solutions.

A routine application of the method of [K], pp. 66-67, shows that a(n+1)/a(n) tends to (1+/2)2,
as m — 0o (see also [P], p. 202). This implies that a(n + K)/a(n) tends to (1 +/2)%K as n — oo.
On the other hand if (10) were true, it would follow that if a(n + K)/a(n) tends to any non-zero
limit, that limit must be a rational number. Now (1 + \/5)21{ always has the form a + b\/i, with
a and b integers, and b # 0 (use the binomial theorem), and this must be irrational, thanks to
Hippasus of Metapontum (see also [W’]).

2 A Short Proof of Wimp’s Theorem

I will now give a short proof of Wimp’s theorem[W] that 3F»(a, b, c;d, e;1) cannot be expressed in
closed form, in the form analogous to (7). If it were then

b(n) ::3F2(—n,—n,n+1;1,1;1):Z(n—]:k)(;:)2 (11)
k=0

would have a formula of the form (9), which would entail, for some integer K, and polynomials
P(n), Q(n) with integer coefficients that

P(n)b(n+ K) — Q(n)b(n) =0, n=0,1,2... . (12)

A routine application of the method of [K], pp. 66-67, shows that b(n + 1)/b(n) tends to ((1 +
V/5)/2)®, as m — oo (see also [P], p. 200). The rest of the proof goes ditto, with v/2 replaced by
V5, and 2K replaced by 5K.

Epilogue

The referee has found a much quicker proof of the main result of this paper. He pointed out that
the specialization

oFi(a,a+1/2;1/252) = (1/2)(1 + vx) 72 + (1/2)(1 + Vz)*
also immediately implies that Gauss’s evaluation of 2 F;(1) cannot be extended to 2 Fi(x).
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In spite of this beautiful proof of the referee, the present paper still serves a purpose. I believe that,
although the referee calls his or her proof ”trivial”, it is very sleek, and I am glad that I can use
the present paper to present it. Moreover, trivial or not, the result stated in the title is interesting,
and ought to be pointed out. Finally, the method described in this paper, that was inspired by
McIntosh and Wimp, can be used for proving non-closed-formness of many other hypergeometric
and combinatorial sums.
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