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(Background) Consider a situation like this

1. We have multiple data sets.
2. We have multiple data sets. A bunch of points are missing.

3. Not only are they not available, but it also happens randomly.

Mysterious data cleansing process.

We start to ask ourselves the ultimate question:

- What if the data we received is just wrong from the beginning?

- In this case, then what are we doing?



What do we want to achieve?

1. Using multiple sources of data together to predict something moving towards
certain direction.

2. Not a missing data problem. No fillings, no aggregation.

3. As simple as possible + flexible.

What type of problems we encounter?

1.1 Data comes in with different qualities
- Different frequencies - Different measurements (units)

- Amount of noises (accuracies and the verification of sources)

1.2 What does the data really mean? It's not just about numbers.
- Macro and micro structures - History

2.1 Aggregation creates loss of information. Filling introduces noise.

3.1 What type of data should we chose from?
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Introduction to one and only notation

Frequency mismatch: m

Simple example when m= 2, 3.
Two types of data: high frequency and low frequency data

High frequency data Low frequency data

O : highest frequency data X, >< : low frequency data yt(mi)

x OO0 00000000000 O0
"t X X X X X X X




Related work

Vixed Data Sampling (MIDAS) regression models

L
The MIDAS Touch: 1/ms. 1
Mixed Data Sampling Regression Models Xyl = ﬁ() + E , Bij(L ’))’t "+ €

(2002), Ghysels, Santa-Clara, Valkanov

J=1 .
Target point

X, 00000000000000009
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BiS(L 1/mi) Bi7(L 1/mi) Bi6(L I/mi) BiS(L l/mi) Bl-4(L l/m,-) Bi3(L 1/ml-) Biz(L 1/ml.) Bil(L 1/mi)

Frequency mismatch m=2, by using the past L (Length) number of y’s to predict the next target point.

*In this case, L=8, Bj(L'"™) |s the coefficient for ¥, -

* The original MIDAS model is used to predict the low frequency data, the model can be modified to predict the high frequency
components, which is called Reverse-MIDAS.



MIDAS with multiple low frequency inputs

K L
X1 = Po + Z Z Bij(Ll/m")ytmi T €t

=1 j=1 Target point
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*In this case, K=3, L=8, Bj(L'"™) |s the coefficient for ¥; -



Variations of the MIDAS model

1/m; i
Original linear model: X1 = Po+ Z Z By(L™™)y," + €4,

=1 j=1

1/mpyy,
Autoregressive linear model: X1 = X+ Py + Z Z Bi(L Y, €

General non-linear model: X1 = Py + &

=1 j=1
(

Z Z By(Ll/m ))’t + €44

. OO 00O0O
v, m; =2 X X

Target point

O O
X
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X X X X X

O
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Draw a box, do the math. That’s it.



Updates and potential problems with MIDAS model

L
1/myy M
Original linear model: X1 = Po+ Z B(L™)y," + €4,
j=1

Target point

x 0000000000000 00O0O
mom=2 [ X X X X X X X x¥

A ONOCRORORORONONONOROEONORONONORORS
Random order | X X X X X X X X_f

The MIDAS model focuses on the number (length) of y’s, it doesn’t care about where are the y’s.

We will still have the same formulation, the MIDAS model doesn’t
necessatrily has to be under the mixed frequency data context.



Feed-forward Neural Networks

Output layer >

1

_ 1 1 1
hy = ®(W;x ) + Wyxp, + Wix3)

Hidden layer >

Input layer >

T
-

Figure 1: A vanilla network representation, with an input of size 3 and one hidden layer and one output layer

of size 1.

Why do we need the activation functions: introducing non-linear properties to realize complex mappings.

* Figure 1, source: https://towardsdatascience.com/recurrent-neural-networks-d4642c9bc7ce
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How do we get Recurrent Neural Networks

Output layer = N O, O,
Hidden layer === Hidden layer h Hidden layer h, Hidden layer h,

—— @ - ) @
t—1

Feed forward Network with ‘time’. Feed forward Network with ‘time’.

Feed forward Network without ‘time". Where is the past information? Including the past information.

Step 1 Step 2 Step 3

Figure 2: Evolution chain: from feed forward network to recurrent neural network
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Recurrent Neural Networks formulation

The hidden state has two sources of inputs:

ht = (I)(Whhl‘—l + Wxxt + bh)

OZ‘ —_ WOhl‘ + bO

Meanwhile the output can be anything.
Relevant or irrelevant to the context,
for example:

Figure 3: Recurrent Network structure

1. The prediction of X, |, oreven X, 5.
2. The weather condition for next week.

3. Price fluctuations on apples.
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Recurrent Neural Networks formulation

Do we need to share the parameters across
the inputs over time?

® Reducing model’s complexity. (computation & overfitting)

- Parameter sharing reflects the fact that the model is
performing the same task at each step.

® /osing versatility and depth of the model.

- Introducing constraints on inputs, it has to be fixed
length over time. (* this one is huge *)

W,

WX WX X
® © 60 —

o **[ftime length is fixed, the RNN has arbitrary weight, it will have the
same structure as a regular feed forward network.

Figure 4: Recurrent Network structure from another point of view.
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Recurrent Neural Networks with two inputs (m=2)

Wh Wh Wh Wh
—_— by, > > hyy >

W 1174 1% Wy W, Wy

X y r

@n O @

Figure 5: Recurrent Network structure with two types of inputs

Wh Wh Wh Wh
—_— by —> K —> By >

w \ W, W, WA W,

X
& i (e

Figure 6: Recurrent Network structure with two types of inputs
But y occurs every two steps.
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hy=0®Wh_, +Wx + Wyyt)

Can we formulate it in this way?

ht = (I)(Whht—l + Wx.xt)
h = @Wyh + Wox, + W yi1)

The weights are shared across time, y has missing values.



Recurrent Neural Networks with two inputs (m=2)

Wh Wh Wh Wh Wh Wh
S ht—l —_—> ht S ht+1 > ht+2 > ht+3 >

W Wx Wy Wx Wx W

'YTXIXTIXXXY

Figure 7: Recurrent Network structure with two types of inputs, y occurs every two steps.

® Two types of filling/prediction that
ht = (D(Whht—l + Wxxt + Wyy{”’edi“) are d.ifferent: (?onstam and Z(laro |
® Any interpolation methods will not be suitable,
must use extrapolate methods. (can not use future information)
ht+1 — (I)(Whht + Wxxt+1 + Wyyt+1) e Under this formulation structure, the performance of the
model depends on the accuracy of the prediction.
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Recurrent Neural Networks with two inputs (m=2)

Old model with filling/prediction New model with filling/prediction

. redict _ 1 1 1..predict
h, = ©(W,h,_ + Wx, + Wy ) h, = ©(W,h,_; + Wox, + Wy ")
by = ©(Wyh, + Wix, g + Wyyf+1) hyy = (I)(Wl%ht + W)%xt+1 + Wyz)’t+1)
How do we tackle the mixed frequency context? Two sets of weights to capture different signals.

Why is the data in mixed frequency?

Can the mixed frequency property be utilized
in the model?

Old model with ZERO filling/prediction New model with ZERO filling/prediction

— _ 1 1
— _ 2 2 2
Npr = PCWRhy + WXy + Woyi) Ny = PWi R+ Wex o + Wiviy)
One set of weight sharing across both scenarios Two sets of weights to compensate with the missing data
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MF-RNN variations with two inputs (m=2)

hy = ®(Wyh,_; + Wlx, + W]yPreden)
Original Mixed Frequency RNN:

m=2 hyyy = @Wih, + Wix., + Wy2Yt+1)

ht = q)(W}}ht—l + Wl,lxt + W)},th_l + W)}ytpredict)

X

Autoregressive MF-RNN
_ _ 2 2,1 2,2
m=2 By = OWih + Wik + Warx, + Wiy,)

X

— | 1,1 1,2 1 di
Non-linear MF-RNN h = q)(Whht‘l +8(Wex + Wetx g + Wyyf . m))

m=2 Byt = QOVEh, + 8WE i + W2k, + Wiyia)
G | MF-RNN y
enel’é,lnzz ht = (Kh(QO’ t)ht—l + g (K)}(Hl’ t)xt + Kf(@z, t)xt_l + Ky(93, t)}’z))
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Recurrent Neural Networks with two inputs (m=3)

Target point

X, OOOOOOOOOOOOOOOOO
yt,m—3 X X >< X X_

i |

Starting point No. 1

Starting point No. 2 Window length=3 '.
Starting point No. 3 ¢ Cycle length =3 %
Mixed Frequency RNN (different starting point):
Starting at No. 2: Starting at No. 3:
hy = ©(Wyh,_; + Wlx, + W]yPreden hy = ©(Wyh,_y + Wlx, + WyPreden
hypy = DWih + Wix,y + WyPreden iy = OWih + Wix + Wiy)
Ry = (D(Wlfhtﬂ + W)?xt+2 + W;yt+2) h,.,= CI)(W3ht+1 -+ W3x[+2 + W3 f’_sdlc’)

17



Recurrent Neural Networks with two inputs (m=3), with constant fillings

Constant fillings has two meanings:

- Predict the present with the information from the past, without any modification.
- Carrying the past information to present, and only utilize the information from the past.

An example with two inputs when m=3:

OrMulatio
0 P another 5, ol n from

oo 9o ologoloo O0000O
=3 X XX X X

-1 -1t t—=2 t—1 1
Y %" &

First RNN Second RNN Third RNN \

First RNN: h, = CD(hHWlh + x, Wi + thIy) Windbw'/éhgth=3 i‘,
¢ Cycle length =3 -

Second RNN: h, = <I>(h,_1W§l +x, Wy +Hy W)

Third RNN: h, = ®(h,_ W + x W3 +y,_,W?
18
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Recurrent Neural Networks with three inputs (m=2, 3)

L,=2X%3
Target point

OOOOOOOOOOOOOOOOO
m=3 % X X X X X

m, =2 N
I TS (e
Starting point at time t | cycle length =6 |
hy = ©(h,_ W + ;W) + y, W) + z,W?) | hy = ®(h,_ Wi + x Wi +y W’ + z,W?)
hgy = QU + X, W + yPredictyyy 4 gpredictyyay hyey = @ Wy + % W5 + 0 +0)
b= (I)(ht+1Wh + X, W3 + yt_,_zWy f+”§d’“W§) b= (I)(ht+1Wh + x40W5 + yt+2W +0)
h, 3 = ®(h, +2W£’ + X 3 W) + yf_: ;diCtWZ + Z43W)) 'ht+3 = (I)(ht+2W£ + xt_|_:3ij +0+2,3W)
T ;
Total number of six equations Filling with ZEROS Total number of six equations
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Recurrent Neural Networks with three inputs

Corollary 3.0.1. The number of the patterns N, < N,,. Where #N,, is defined as the total least
common multiple among all the unique values my, k= 1,...K.

Proof. Consider a special case with two types of exogenous inputs y\™" and y\™?), where m; = 2, my =
4. Then N, < N,,, see table [2] below,

Variable List & Combination of Patterns
time Ty yt(m‘) yfmz) Pattern(s)
4t O O O Pattern 1
4t + 1 O O X Pattern 2
4t + 2 O O O Pattern 1 (repeats)
4t + 3 O X X Pattern 3

Table 2: Patterns with two exogenous variables yfm‘), yt(mZ), my = 2,mo = 4.

This is also a problem, under this formulation, if any exogenous input has a large value of frequency
mismatch, the total amount of weights will increase dramatically. For example, m=100.
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Recurrent Neural Network with infinity frequency mismatch (extreme)

.................. w = 00
Py ht_15 h, Pyt
P tieeeses —_— e
I T
Xy I - X I X141
: Y S
S ECCET TP PP PP -

Infinity window (cycle) length for one extra input y™=.
Formulation 1:
hy = ®(h,_ W + ;W + y=W")
hpr = Oy Wh +xW; + ypredlCtWy)
Ny = (I)(ht+1W§l +xoW5 + ypredth3y )
Niys = (I)(ht+2W3h + X 3Wy + ypredthZ)

v
Infinity sets of weights

Infinity number of equations

............

Formulation 2:

hy = ®(h,_ W + W} + y"=W?)

ht+1 — (I)( h Wh + xt+1Wx ypredlctWy)
hyp = q)(htHWh +x, oW, + ypredwthy )
By = q)(ht+2Wh + X3 W5 + ypredwthy )

v
Two sets of weights

Infinity number of equations



Recurrent Neural Network with m=3 frequency mismatch (another formulation)

o | MisSing data for v, .. missing data for y"
my . me
Vi : Y +3
h_ l h, - h U l iy Pt
ﬁ _> i::::i _> :.---.-: _’: _> '""-: _> oooooooo
DAy Xepl o Xipg | D A3 yzl_% Tred o f
R T L L LT T R PP PP >

Window (Cycle) length = 3 for two extra inputs with same frequency mismatch. y™,y"? .m, = m, = 3.

Formulation 1: Formulation 2:

hy = ©(h,_ W+ x Wi+ y" W™ + y" W) hy = @(h,_ Wi+ x Wi + y" W™ + y" W)

A A — h aml m am?2 m
h = q’(hth + xt+1W§C + )’?illwzyml + )’?flwzymz) By = (D(hth + xt+1W£C + y,:j_lwzy '+ y,;iley 2)

_ h ol Yt &2 TV _ h ] Yt ST TE Y
By = @ Wy + x, W5 + 37 W g W) By = O Wy + X, Wy + DT Wom ST W)

v
Two sets of weights

Three equations

v
Three sets of weights

Three equations



Recurrent Neural Network with m=2,3 (Pattern formulation)

__________________ - missing data for "’ : i:missing data for y"” : RNN cell patterns
Same pattern
Same pattern
. m m L A my
: yt L L yt+12 ...... yt+4 yt+6
hy_y l hy Ry l ) By l Py Miys l
‘ ‘ ...... . ’ ...... __’ ...... - . ...... ' ...... - _>:
- X m X X X m, Xirg Xit5 - X m,
LN i AR 2 +3 Y3 EOLED T . 6 Vit
< >
) Four different patterns in total
D R T e L L L LT >

Window (Cycle) length = 6 for two extra inputs with frequency mismatch. y™’

23
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Recurrent Neural Network with m=2,3 (Pattern formulation)

Variable List & Combination of Patterns

time Ty yimy) ylme) Pattern(s)

6t O O O Pattern 1

6t + 1 O X X Pattern 2

6t + 2 O O X Pattern 3

6t + 3 O X O Pattern 4

6t + 4 O O X Pattern 3 (repeats)
6t + 5 O X X Pattern 2 (repeats)

Table 1: Patterns with two exogenous variables y(m‘), yt(mZ), my = 2,mo = 3.

t

Based on the structure of each pattern, at time ¢, we can model them as,

(m1) (m2)
(@ (W,’j,lht_l + Wi+ W]y Wi yf"‘")) . Pattern 1
O (Whohy g+ Wz, + W ) Pattern 2
=< L.2 t—1 T I,2$t+ 1,2 Yy ) attern
(m2)
d W£,3ht_1 + W}",3xt + +W}’,3 : yt(m'“’)) : Pattern 3
| P (W£,4ht—1 + W}"Axt) . Pattern 4
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Recurrent Neural Network with Asynchronous frequency (Pattern formulation)

Target point

x O0O0O0OO0OO0Ololoooclolooocooo
Random [Ty S¢Tg X XX X x7

Frequency
Pattern one Pattern two
Pattern one cell formulation: | Pattern two cell formulation: i
hy = ®(Wlh,_ + Wix, + W)yPrede hy = ®Wih_, + Wix,+ Wry)

This formation method can be extended to situations with asynchronous inputs, as long as all the patterns are

developed, which is possible under simple scenarios.
25



Recurrent Neural Network chain of development (formulations)

Target point

A ONORONORORORONORORORORONORORORORS
N X X X X X~

Regular recurrent network : No missing data One set of weight

hy = P(Wyh,_; + Wex, + Wy)A’ ) Bpr = PWph, + Wex, + Wyj} +1) Ny = Wyl + Wexn + Wy)A’ +2)

Can fill with zero Three sets of weight

h, = (D(Wlihtq + W)}x[ + W)}j}t) My = (I)(W}%ht + W)gxt+1 + Wyz)A’tH) Mo = (I)(W;?htﬂ + W):c))xt+2 + Wy3§’t+2)

Original mixed fri n
gina ed equency Fixed orders
recurrent network :

Pattern Mixed frequency S— Two sets of weight
recurrent network : Can fill with zero

hy=®W,h_ + Wix,+ W)  hy = OWih, + Wik + Wid)  hyp = @Wih + Wik + Wido)

o6 The same formulation



Mixed frequency RNN theoretical results (intuition/insight)

MF-RNN aggregated through time:

STNTERVEIEY L = 6

—

ht—l -:'> —>

W, W,

S O R

W;

—

—

-

—>

—

W,

H,

W;s :

W,

>

This novel idea still remains to be a problem

hyo = (I)(W}}hHS + W)}xt+6 + Wylj\’t+6)
hys = (I)(W;?ht+4 + ngt+5 + W;l Yixs)

Ll
taa,
‘e
a
Y
Y,
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]
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N,
....
",
N,
....
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....
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.
e
tea,
Y
a
‘a,
‘a,
....
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W,

W;

—

—

W,

Ht+1><Lw

W5

-

—>

W,

>

ht+4 — (I)(W;: ht+3 + W;L Xiya T WS 5\’ t+4)
By = PWh,p + Wix, 5+ Wf’%s)

iy = BEO@@( ... (1))

>

—>

—>

W,

W;

W,

Ht+2><Lw

[ >

W5

 ——

How do we formulate the
new aggregated network H?

.
.
*
*
*
.
.
*
*
*
*
.
.
*
*
*
*
.
.
.
*
*
.
.
o*
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Mixed frequency RNN theoretical results (Stability results)

Stable recurrent models: Stable recurrent networks

John Miller & Moritz Hardt (ICLR 2019)

A recurrent model 1s a non-linear dynamical system given by a differentiable state-transition map

bw: R™ x R® — R™, parameterized by w € R™. The hidden state h; € R™ evolves in discrete time
steps according to the update rule

hi = ¢u(hi—1,74), (1)

Definition 1. A recurrent model ¢,, is stable if there exists some \ < 1 such that, for any weights
w € R™, states h, ' € R", and input x € R¢,

|¢w (h, 2) = du (R, 2)[| < Al — R )

Another way of thinking the definition:
e The gradient with respect to h will always be under 1.

¢ /f we use gradient decent to learn the parameters, the long term gradient will not
explode.
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Mixed frequency RNN theoretical results (Stability results)

Stable RNN can be approximated by a fixed length RNN of itself

h_,—» —> — — = — — 35 5 —-5 —> — —

Prediction 2T

f

— —

f

Time T

Fixed length k

hy_, =0 — — 5 5 5 —> —> —

There is a bound for k such that the

prediction value are close enough. -
. <

Prediction 2’}

127 -2"l < e .
Fixed length k
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Mixed frequency RNN theoretical results (Stability results)

Stable MF-RNN can be approximated by a fixed length RNN of itself?? R
Prediction Zt

f

h_,—> —» — — > —> —> 5 3 5 —> —> 5> 5> —

o o o o o o ol

Time T

Fixed length k
Prediction 2’}

f

hr ;=0 —> — 5 5> 3 —> —> 3> 3> —

Is there a similar result for MF-RNN O O O O O T

such that Time T

127 -2"l < e .
Fixed length k
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Mixed frequency RNN theoretical results (Stability results)

Stability result for reqular RNN:

Theorem 1. Let p be Lipschitz and smooth. Assume ¢,, is smooth, \-contractive, Lipschitz in
x and w. Assume the inputs are bounded, and the prediction function f is L-Lipschitz. If

k > Q(log(yNP /e)), then after N steps of projected gradient descent with step size oy = 1/t,
k
lyr — vz <e.

Similar result for MF-RNN (m=2):

Theorem 2.4 Assume the state-transition mapping ¢, , ¢w, are smooth and
A1, Ao-contractive, Lipschitz in both x and w. Assume the input series are
bounded and the prediction function f is Ly-Lipschitz. If the truncation length

2log 1—Aj1An)e
2W,, (log(A1A2)e/2E LR . .
k > max{ (l(c)é(( ~ Azz))e/ ) : ng( ,\fl *2) ) + 2}, under the projected gradient

descent condition with step length oy = 5, ||z, — zF|| < e.
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Regular RNN theoretical results (Convergence results)

Convergence of gradient method for a fully

Convergence result for reqular RNN: recurrent neural network

Dongpo Xu, Zhengxue Li, Wei Wu (2010)

Theorem 1 Suppose that the error function is given by
(10), that the weight sequence {w*} is generated by the
algorithm (14) for any initial value w°, that Assumptions
(A1) and (A2) are valid, and that # is small enough such
that (23) below is valid. Then, we have

() E(W)<EWY), k=0,1,2,..

(b) There is E° > 0 such that lim,_, ,E(W") = E
©) limp_oo||AWF|| =0, limy_o ||| = 0.

Moreover, if Assumption (A3) is also valid, then we have N Is the learning step size
the strong convergence:

L2 loss function is decreasing

Gradient decent (iteration k) to update
the weight parameters

(d) There exists w € ®, such that lim,_, ,W* = w'.

Assumptions:

Lemma 2.1. Let g : D C R® — R! be continuously differentiable on the compact set Dy C D, and
suppose that the set Q of critical points of g in Dy is finite. Let {x*} C Dqy be any sequence for which
im0 (2F — 2811) = 0 and limg 00 ¢’ ()T = 0. Then limy_,o0 ¥ = z* and g'(z*)T = 0.

Lemma 2.2. Let g: D C R® — R! be twice F-differentiable in the open set Dy C D. Let {z*} C D,
satisfy limy_, o0 (¥ — 2FT1) = 0 and limg_, oo ¢’ ()T = 0. If {z*} has a limit point * for which H,(z*)
is non-singular, then limy_, o 2% = x*.
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Mixed frequency RNN theoretical results (Convergence results)

Convergence result for MF-RNN:

Theorem 2.9. Under similar assumptions, there ezist a constant C,,, such that if the learning rate
n < CL,,’ the loss function E(w}, w5) is a decreasing function w.r.t both wy,wy and there exists a limit

a), (b
value E* > 0 such that limy_, . E(w}, wh) = (@), (b)
Theorem 2.10. Under the assumptions of theorem 4.4, the gradient of the loss function converges to
0,
(c)
E 'w" w’c E(wh,
i [ EC ) g i EEL )
Theorem 2.11. Under assumption A.3
lim w = w’{ (d)
k— o0
lim wy = 'w2.
k— o0
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Mixed frequency RNN numerical results (quarterly & monthly)

Real data experiment: Low frequency data - (GDP), high frequency data - (PCE)

GDP: gross domestic product PCE: personal consumption expenditure

GDP Yaer to year growth rate over time PCE Yaer to year growth rate over time
T T T T T T T T

10%

20% [

By using the quarterly
data, we want to get a
better prediction of the next
monthly data output

] S ) ®
ES X ES X

Growth rate (Value)
Growth rate (Value)

o
X

By using the monthly
data, we want to get a
better prediction of the next

19‘50 19I60 19|70 19‘30 19‘90 2oloo 24;10 15;90 15;95 20‘00 20Ios 20|1o 2o|15 quarter/y data Output

Year/Time Year/Time

0% -

)
ES
T

A
ES

-5%

Quatrterly data Monthly data

® Few data points available.
Several interesting points about this experiment:  [LEEEBE e Ko10] (ol=N (S oA el U fa A0 [ (=119
¢ The correlations between the data selected.

34



MF-RNN the problem of over fitting (quarterly & monthly)

The difference between pattern formulation and generic formulation (both hidden layer d=8)

™% Prediction model: gdp_pce_Rnn_Plus

% Prediction modek gdp_pce_Rnn_Plus
9dp_poe_Rnn_Plus_relu 9dp_pce_Rnn_Plus_rely
6.5% - gdp_pce_Rnn_Plus_tanh gop_pee_FRnn_Puua_tanh
: - 7&_9\':;.&&0’\-_“ 5.5% - - g_c:itm_ﬁn_hr
| 1 f
“ | 1 I i | [‘ % |
|' | | ‘I ! | ‘I ll K’A |'| |I 5% (‘;f(y‘. { | I\;\
| | | o ] [l 3 v \ y. ¥ \
Ay (N | ]\ e
HUVI () 1% 45% | |7 A ML A
5% HIN \ | | ‘o | ' / \' i " f ! l
i n TlEvin LI La ) i r; b i i i (il |
§4,5% ..M | | R 1”\1‘ ! ’ l{‘ |/} /Il ll | Iffll 49‘“"" d ¥ )\ . i\ i I
M | REARTA I A | N I
T O R MU T L A j
4% (l' \ I | | , lJ | 1.\\ 1 | || J'\'.f/' ‘ '| 35% - || | A 1k r'{u\”\‘.‘{ ‘
N ' i AR L A ! A A i A
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(a) Generic MF-RNN formulation. (b) Pattern MF-RNN formulation.

Figure 16: Forecasting monthly Personal Consumption Expenditure (PCE) growth rate with GDP
under two types of MF-RNN formulation. Plot (a) has three sets of weights while plot (b) only contains

two sets. Blue, red, yellow line represent the results by using ReLU, tanh and linear activation function
respectively.

In this case, generic formulation causes over fitting. Pattern formation performs better.
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Correlations among data (quarterly & monthly correlation)

The effect of data correlation

HF: Monthly data LF: GDP Forecasting monthly data with quarterly variable (GDP) m = 3

MF Generic Form MF Pattern Form RRMIDAS URMIDAS
Personal Relu 0.352 0.1683* 0.1746**
Consumption (PCE) tanh 0.640 0.1683* 0.1746** .
Expenditure linear 0.155 o 0.1683* 0.1746%* When data are highly correlated to
0 each other, the pattern RNN
Consumer Relu 0.116 0.0782* 0.0911%* provides better results
Price (CPI) tanh 0.371 0.0782* 0.0911%* ’
Index linear 0.071 0.0782* 0.0911**
Inclusive Relu 1.137 0.554 0.5181%* 0.4911%**
Development (IDI) tanh 0.599 0.927 0.5181* 0.4911%*
Index linear 0.527 0.523 0.5181* 0.4911%*
Unemployment Relu 0.054 0.0240 0.0241* 0.0263%*
Rate (UNRATE) tanh 0.547 0.0240 0.0241* 0.0263%*
linear 0.194 0.0251 0.0241* 0.0263** \
Industrial Relu 4.611 3.673 2.9545* 3.5965%*
i;;’d“c“o“ (IPT) E’:‘};I ;'ggg ;(1)21_); o - If not correlated, it adds noise to
ex e . . — —

the model, linear regression
provides better results.

*, #* Midas Restricted and Unrestricted Models don’t contain activation functions, * is added for easier comparison across lines.

Table 8: MSE for UR-Mixed-Frequency RNN and benchmarks comparison. (Low Frequency: GDP, High Frequency: PCE, CPI,
IDI, UNRATE) . _ . . .
R Samans, J Blanke, M Drzeniek, and G Corrigan. The inclusive development index 2018 summary

. e and data highlights. In World Economic Forum, Geneva, Switzerland, 2018
The model works under certain condition.

. A more granular look at the data shows that GDP per capita
When we are using the numbers, 9 per eep

) ) . . is rather weakly correlated with performance on IDI indicators An example for
we are also using the structures behind the data, which is other than labor productivity and healthy life expectancy’ (and the IDI variable.
more important in this case. poverty rates in advanced economies). This highlights a key
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Mixed frequency RNN future improvements

Add structure restrictions:

1. For a reqular RNN, we can impose structure restrictions on the weight matrix, for example, orthogonality.

On orthogonality and learning recurrent networks with long term dependencies

(2017) Eugene Vorontsov, Chiheb Trabelsi, Samuel Kadoury, Chris Pal.

2. Change the loss function formulation. For example, instead of the L2 loss,
loss = ||z, — Z||? + A||W'W =1
oss = ||z, — ZII* + 2| fl

* 3. Limitations on the number of parameters. Instead of having multiple independent sets of weights,
the weights can share the same variables. Take the general formulation as an example.

General MF-RNN
m=2

h = @ <K,,(90, Dh_, + g (K,}(el, )%, + K20, 0%, + K05, r)yt>>

Where we can restrict 6 = 6,

4. Extend to more advanced RNN structure, for example, LSTM, GRU.
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Mixed frequency RNN potential application

Another very interesting proposal:
The MF-RNN was used across multiple data sets to predict. We can also use it for a single data set.

The core idea is to create multiple mixed frequency data sets.

Empirical mode decomposition. (EMD)

g (a)
— The original signal (a) = (c) + (d)
< The EMD method (b)
. . 1 ' - ' . - ' ' < The decomposition results.
o_ e
-2 -

0 2 ' 6 8 10 12 14 16 18 20

Figure source: https://towardsdatascience.com/decomposing-signal-using-empirical-mode-decomposition-algorithm-explanation-for-dummy-93a93304c541
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To be continued...

Thank you!
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