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Overview

Simply generated trees and the main inequality: y(r) ≤ R

Criterion for asymptotic sharpness: y(r)=R

Application in Lie theory: Kuperberg’s 1996 conjecture
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trees

A rooted tree is an undirected acyclic connected graph with a
distinguished point, the root. Subtrees dangling from a node are ordered
amongst themselves.

We’re interested in asymptotically counting the

number of trees with n nodes, subject to certain conditions.

Example 1: Suppose each node in a tree is allowed to have an arbitrary
(non-negative integer) number of children. Such a tree is sometimes called
a “planted plane tree.” What can be said about yn, the number of planted
plane trees with n nodes?
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generating functions

One approach is to use a generating function. We let

y(x) =
∑
n≥1

ynx
n

be the generating function for (yn)∞n=1 .

Then y(x) satisfies a functional equation:

y(x) =
x

1− y(x)

= x + xy(x) + xy(x)2 + xy(x)3 + · · ·

In short,
y(x) = xA(y(x))

where A(x) = 1
1−x .

4/16/20 4 / 23



generating functions

One approach is to use a generating function. We let

y(x) =
∑
n≥1

ynx
n

be the generating function for (yn)∞n=1 .
Then y(x) satisfies a functional equation:

y(x) =
x

1− y(x)

= x + xy(x) + xy(x)2 + xy(x)3 + · · ·

In short,
y(x) = xA(y(x))

where A(x) = 1
1−x .

4/16/20 4 / 23



generating functions

One approach is to use a generating function. We let

y(x) =
∑
n≥1

ynx
n

be the generating function for (yn)∞n=1 .
Then y(x) satisfies a functional equation:

y(x) =
x

1− y(x)

= x + xy(x) + xy(x)2 + xy(x)3 + · · ·

In short,
y(x) = xA(y(x))

where A(x) = 1
1−x .

4/16/20 4 / 23



generating functions

Idea: A tree of n nodes is built recursively by gluing k subtrees together at
the root, for some 1 ≤ k < n. The coefficient [xn](xy(x)k) is the number
of trees having n nodes and built by gluing k subtrees at the root.

y(x) = x + xy(x) + xy(x)2 + xy(x)3 + · · ·

y4 = [x4]y(x)

= [x3]y(x) + [x3]y(x)2 + [x3]y(x)3 = 5

4/16/20 5 / 23



generating functions

Idea: A tree of n nodes is built recursively by gluing k subtrees together at
the root, for some 1 ≤ k < n. The coefficient [xn](xy(x)k) is the number
of trees having n nodes and built by gluing k subtrees at the root.

y(x) = x + xy(x) + xy(x)2 + xy(x)3 + · · ·

y4 = [x4]y(x)

= [x3]y(x) + [x3]y(x)2 + [x3]y(x)3 = 5

4/16/20 5 / 23



generating functions

How can we use y(x) to understand (yn)n≥1?

The functional equation y(x) = x
1−y(x) can be solved exactly:

y(x) =
1−
√

1− 4x

2
= x + x2 + 2x3 + 5x4 + 14x5 + 42x6 · · ·

In fact, yn+1 = 1
n+1

(2n
n

)
is the nth Catalan number.

We see immediately that lim supn→∞ n
√
yn = 4, by the principle that the

radius of convergence of an analytic function is the distance from the
origin to its nearest singularity. This gives the exponential growth:
yn ∼ 4n+o(n), as n→∞.
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binomial theorem

We can also obtain the subexponential growth of (yn) from a
generalized version of the binomial theorem.

Theorem

For λ ∈ R+, and α ∈ C \ Z≥0, we have [zn](1− λz)α ∼ λn

nα+1Γ(−α)
, as

n→∞.

In the case y(x) = 1−
√

1−4x
2 , this gives (since Γ(−1/2) = −2

√
π):

yn ∼
−1

2
· 4n

n3/2Γ(−1/2)
=

4n−1

n3/2
√
π

.
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transfer theorem

This example is nice, but what if we can’t solve for y(x) exactly? Or what if we
can solve for y(x), but it’s not of the form (1− λz)α?

Theorem (Flajolet, Odlyzko, 1990)

For λ ∈ R+ and α ∈ C \ Z≥0, if y(x) =
∑

n≥1 ynx
n is analytic in a Pac-Man

domain ∆ around its disk of convergence, then

y(z) ∼ (1− λz)α as z → (1/λ) in ∆ =⇒ [xn]y(x) ∼ λn

nα+1Γ(−α)
as n→∞.
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transfer theorem

Example 2: Let yn count the number of trees with n nodes, such that
each node has 0,1, or 2 children. Then with A(x) = 1 + x + x2, we have

y(x) = xA(y(x)) = 1 + xy(x) + xy(x)2.

y(x) =
1− x −

√
(1− 3x)(1 + x)

2x
=

1− x

2x
−
√

1− 3x ·
√
x + 1

2x

=

[
1 +

3

2
(1− 3x) +O(1− 3x)2

]
− (1− 3x)1/2

[
√

3 +
7
√

3

8
(1− 3x) +O(1− 3x)2

]
= 1−

√
3(1− 3x)1/2 +O(1− 3x).

y(x)− 1 ∼ −
√

3(1− 3x)1/2, so that yn ∼ −
√

3·3n
Γ(−1/2)n3/2 =

√
3

2
√
π
· 3n

n3/2 .
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simply generated trees

Examples 1 and 2 both satisfy a similar functional equation and show a
subexponential growth factor of n−3/2.

Let (an)n≥1 and (yn)n≥1 be sequences of non-negative integers with
generating functions A(x) = 1 +

∑
n≥1 anx

n and y(x) =
∑

n≥1 ynx
n,

satisfying:

y(x) = xA(y(x))

Combinatorial interpretation: yn counts the number of rooted trees with
n nodes (including the root), such that for each i ≥ 1, each internal node
having i children can be colored with one of ai colors. A family of rooted
trees is called simply generated if counted by a sequence (yn) satisfying
the above functional equation for some A(x) with non-negative
coefficients.
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previously known facts

Call a sequence (an)n≥0 of non-negative integers “good ” if:

1 a0 = 1, an ≥ 1 eventually,

2 (an) is not supported on an arithmetic progression in N,

3 y(x) has finite radius of convergence r .

(Think of an eventually increasing sequence.)

If (an)n≥0 is good, then:

1 y(r) <∞.

2 From y(x) = A(y(x)) , the radius of convergence of A(x), say R,

satisfies:
y(r) ≤ R

This inequality is what we want to study – when is it sharp?
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previously known facts

From y(x) = xA(y(x)) , one can check that the inverse function y−1 is

given by

ψ(x) =
x

A(x)
.

Theorem (Meir, Moon, 1978)

Let R denote the radius of convergence of A(x), for (an)n≥0 good. If there exists
τ ∈ (0,R), such that A(τ)− τA′(τ) = 0, then the following holds:

(1) y(x) has radius of convergence r = ψ(τ), which implies that y(r) = τ < R.

(2) The coefficient sequence (yn)∞n=1 satisfies the following asymptotic estimate:

yn =
C

rnn
3
2

(1 +O(n−1)),

as n→∞, where C =
√

A(τ)
2πA′′(τ) .
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Recall Example 1: y(x) = xA(y(x)), where A(x) = 1
1−x , and R = 1.

In this case ψ(x) = x(1− x), and A(x)− xA′(x) vanishes at 1/2.
It follows that y(x) has radius of convergence ψ(1/2) = 1/4.

Sketch of proof: To establish (1), observe that if A(τ)− τA′(τ) = 0 for
τ ∈ (0,R), and we further assume that y(r) > τ , then there is some point z in
(0, r) where y is analytic and y(z) = τ . By the Inverse Function Theorem,
0 = ψ′(τ) = ( d

dz y(z))−1, which implies that y ′(z) =∞, a contradiction.

Next, if y(r) < τ , then ψ′(y(r)) 6= 0. Therefore, y admits an analytic
continuation to a neighborhood of r , namely the local inverse of ψ at r . This
contradicts Pringsheim’s Theorem, establishing that y(r) = τ .
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previously known facts

Sketch of proof: To establish (2), observe that the function ψ − r has a
second-order zero at τ , since ψ(τ) = r and ψ′(τ) = 0:

ψ(z)− r = (z − τ)2g(z), g holomorphic and non-zero near τ.

This implies that y − τ behaves locally like a square-root function near r :

y(z)− τ = (z − r)1/2h(z), h(z) =
√

1/g(y(z))

We see that
y(z)− τ ∼ (z − r)1/2h(r),

as z → r , and the transfer theorem of Flajolet/Odlyzko applies. Thus,

yn ∼
C

rnn3/2
.
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criterion for sharpness

Theorem (S., 2020)

Suppose that (an)n≥0 is good and the generating functions A(x) and y(x),

with radii of convergence R and r respectively, satisfy y(x) = xA(y(x)) .

Then, the inequality y(r) ≤ R is sharp (i.e. y(r) = R) if A(z)− zA′(z)

doesn’t vanish on (0,R).

Corollary

With A(x) and y(x) as above, exactly one of the following is true:

(1) A(z)− zA′(z) is non-vanishing for z ∈ (0,R), in which case R = y(r).

(2) R > y(r) = τ , where τ is the unique solution to A(τ)− τA′(τ) = 0
on (0,R), and yn = Crnn−3/2(1 + o(1)) as n→∞, for some C > 0.

In particular, the absence of the n−3/2 polynomial factor in the asymptotic
expansion of yn certifies that the inequality y(r) ≤ R is actually sharp.
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application in Lie theory

For each positive integer n, let an denote the number of triangulations of a
regular n-gon, such that the minimum degree of each internal vertex is 6. The
sequence begins

(an)∞n=1 = 0, 1, 1, 2, 5, 15, 50, 181, 697, . . .

For each positive integer n, let bn denote the dimension of the space of invariant
tensors in the n-th tensor power of the 7-dim fundamental representation of the
exceptional simple Lie algebra G2. The sequence begins

(bn)∞n=1 = 0, 1, 1, 4, 10, 35, 120, 455, 1792, . . .
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application in Lie theory

Let A(x) = 1 +
∑∞

n=1 anx
n, and with y1 = 1 let yn = bn−1 for n ≥ 2, and

let y(x) =
∑∞

n=1 ynx
n.

Theorem (Kuperberg, 1996)

The identity of formal power series holds:

y(x) = xA(y(x)) ,

Furthermore, y(x) has radius of convergence r = 1/7, and hence

lim sup
n→∞

n
√
an ≤

1

y(1/7)
.

Conjecture (Kuperberg, 1996)

y(r) = R, i .e. lim sup
n→∞

n
√
an =

1

y(1/7)
≈ 6.811.
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application in Lie theory

Theorem (S., 2020)

Let (an)∞n=0 and y(x) be as above. Then,

an =

(
1

y(1/7)

)n+o(n)

as n→∞.

Furthermore,

1

y(1/7)
= sup

n∈N
n
√
an =

5π

8575π − 15552
√

3
≈ 6.8211 .

Furthermore,
bn = K (7n/n7)(1 + o(1)), as n→∞,

for a constant K ≈ 2627.6
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outline of proof

(1) Derive asymptotics for (bn)n≥1:

bn ∼ K
7n

n7
, as n→∞.

(2) The asymptotics of (bn)n≥1, specifically the presence of the n−7

polynomial factor as opposed to n−3/2, indicates by the corollary
above that A(z)− zA′(z) does not vanish on (0,R), and hence that
R = y(r) = y(1/7).

(3) It follows that

lim sup
n→∞

n
√
an =

1

y(1/7)
.

With a little more work this becomes an actual limit, implying the
asymptotic expression for an.

(4) The last step is to evaluate y(1/7) exactly.
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some details: (1) asymptotics for (bn)n≥1

(1) bn is the coefficient of xnyn in WMn (Kuperberg, 1994), where

M(x , y) = 1 + x + y + xy + x2y + xy2 + (xy)2,

and

W (x , y) = x−2y−3(x2y3 − xy3 + x−1y2 − x−2y + x−3y−1 − x−3y−2

+ x−2y−3 − x−1y−3 + xy−2 − x2y−1 + x3y − x3y2).

Use a saddle-point analysis to evaluate this coefficient:

bn =
1

(2πi)2

∮ ∮ [
W (z1, z2) ·M(z1, z2)n · 1

(z1z2)(n+1)

]
dz1 dz2.

Surprisingly, integrals involving lower order terms vanish, and we recover the
factor n−7 as well as

K =
4117715

√
3

864π
≈ 2627.56 .
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some details: (4) value of y(1/7)

(4) Proof that y(1/7) = 5π
8575π−15552

√
3
.

Theorem (Bostan, Tirrell, Westbury, Zhang, 2019)

y(x) =
1

30x4

[
R1 · 2F1

(
1

3
,

2

3
; 2;φ(x)

)
+ R2 · 2F1

(
2

3
,

4

3
; 3;φ(x)

)
+ 5P

]
,

where

R1(x) = (x + 1)2(214x3 + 45x2 + 60x + 5)(x − 1)−1,

R2(x) = 6x2(x + 1)2(101x2 + 74x + 5)(x − 1)−2,

φ(x) = 27(x + 1)x2(x − 1)−3,

P(x) = 28x4 + 66x3 + 46x2 + 15x + 1.
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some details: (4) value of y(1/7)

(4) Proof that y(1/7) = 5π
8575π−15552

√
3
.

Evaluating the polynomials at x = 1
7 , the formula simplifies to

y

(
1

7

)
=

76

30

[
−55296

2401
· 2F1

(
1

3
,

2

3
; 2; 1

)
+

9216

2401
· 2F1

(
2

3
,

4

3
; 3; 1

)
+

150

7

]
.

We use facts about the gamma function, namely that Γ(z + 1) = zΓ(z) for
z 6∈ Z≤0 and the following:

2F1 (a, b; c ; 1) =
Γ(c)Γ(c − a− b)

Γ(c − a)Γ(c − b)
(Re(c) > Re(a + b)),

Γ(z)Γ(1− z) =
π

sin(πz)
(z ∈ C).

These suffice to simplify the above expression for y
(

1
7

)
.
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Thank you.

Thank you for the opportunity to speak today!

For more details, there is a draft on the arXiv with the same title as the
talk, although a more polished version will be forthcoming soon.
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