A criterion for asymptotic sharpness in the enumeration of simply generated trees

Robert Scherer

rscherer@math.ucdavis.edu

$$
4 / 16 / 20
$$

Overview

- Simply generated trees and the main inequality: $y(r) \leq R$
- Criterion for asymptotic sharpness: $y(r)=R$
- Application in Lie theory: Kuperberg's 1996 conjecture

trees

A rooted tree is an undirected acyclic connected graph with a distinguished point, the root. Subtrees dangling from a node are ordered amongst themselves.

trees

A rooted tree is an undirected acyclic connected graph with a distinguished point, the root. Subtrees dangling from a node are ordered amongst themselves.

We're interested in asymptotically counting the number of trees with n nodes, subject to certain conditions.

trees

A rooted tree is an undirected acyclic connected graph with a distinguished point, the root. Subtrees dangling from a node are ordered amongst themselves.

We're interested in asymptotically counting the
number of trees with n nodes, subject to certain conditions.
Example 1: Suppose each node in a tree is allowed to have an arbitrary (non-negative integer) number of children. Such a tree is sometimes called a "planted plane tree." What can be said about y_{n}, the number of planted plane trees with n nodes?

generating functions

One approach is to use a generating function. We let

$$
y(x)=\sum_{n \geq 1} y_{n} x^{n}
$$

be the generating function for $\left(y_{n}\right)_{n=1}^{\infty}$.

generating functions

One approach is to use a generating function. We let

$$
y(x)=\sum_{n \geq 1} y_{n} x^{n}
$$

be the generating function for $\left(y_{n}\right)_{n=1}^{\infty}$.
Then $y(x)$ satisfies a functional equation:

$$
\begin{aligned}
y(x) & =\frac{x}{1-y(x)} \\
& =x+x y(x)+x y(x)^{2}+x y(x)^{3}+\cdots
\end{aligned}
$$

generating functions

One approach is to use a generating function. We let

$$
y(x)=\sum_{n \geq 1} y_{n} x^{n}
$$

be the generating function for $\left(y_{n}\right)_{n=1}^{\infty}$.
Then $y(x)$ satisfies a functional equation:

$$
\begin{aligned}
y(x) & =\frac{x}{1-y(x)} \\
& =x+x y(x)+x y(x)^{2}+x y(x)^{3}+\cdots
\end{aligned}
$$

In short,

$$
y(x)=x A(y(x))
$$

where $A(x)=\frac{1}{1-x}$.

generating functions

Idea: A tree of n nodes is built recursively by gluing k subtrees together at the root, for some $1 \leq k<n$. The coefficient $\left[x^{n}\right]\left(x y(x)^{k}\right)$ is the number of trees having n nodes and built by gluing k subtrees at the root.

$$
y(x)=x+x y(x)+x y(x)^{2}+x y(x)^{3}+\cdots
$$

generating functions

Idea: A tree of n nodes is built recursively by gluing k subtrees together at the root, for some $1 \leq k<n$. The coefficient $\left[x^{n}\right]\left(x y(x)^{k}\right)$ is the number of trees having n nodes and built by gluing k subtrees at the root.

$$
\begin{aligned}
& y(x)=x+x y(x)+x y(x)^{2}+x y(x)^{3}+\cdots \\
& y_{4}=\left[x^{4}\right] y(x) \\
& \\
& \quad=\left[x^{3}\right] y(x)+\left[x^{3}\right] y(x)^{2}+\left[x^{3}\right] y(x)^{3}=5
\end{aligned}
$$

generating functions

How can we use $y(x)$ to understand $\left(y_{n}\right)_{n \geq 1}$?

generating functions

How can we use $y(x)$ to understand $\left(y_{n}\right)_{n \geq 1}$?
The functional equation $y(x)=\frac{x}{1-y(x)}$ can be solved exactly:

$$
\begin{aligned}
y(x) & =\frac{1-\sqrt{1-4 x}}{2} \\
& =x+x^{2}+2 x^{3}+5 x^{4}+14 x^{5}+42 x^{6} \cdots
\end{aligned}
$$

generating functions

How can we use $y(x)$ to understand $\left(y_{n}\right)_{n \geq 1}$?
The functional equation $y(x)=\frac{x}{1-y(x)}$ can be solved exactly:

$$
\begin{aligned}
y(x) & =\frac{1-\sqrt{1-4 x}}{2} \\
& =x+x^{2}+2 x^{3}+5 x^{4}+14 x^{5}+42 x^{6} \cdots
\end{aligned}
$$

In fact, $y_{n+1}=\frac{1}{n+1}\binom{2 n}{n}$ is the nth Catalan number.
We see immediately that $\lim _{\sup _{n \rightarrow \infty}} \sqrt[n]{y_{n}}=4$, by the principle that the radius of convergence of an analytic function is the distance from the origin to its nearest singularity. This gives the exponential growth: $y_{n} \sim 4^{n+o(n)}$, as $n \rightarrow \infty$.

binomial theorem

We can also obtain the subexponential growth of $\left(y_{n}\right)$ from a generalized version of the binomial theorem.

binomial theorem

We can also obtain the subexponential growth of $\left(y_{n}\right)$ from a generalized version of the binomial theorem.

Theorem

For $\lambda \in \mathbb{R}^{+}$, and $\alpha \in \mathbb{C} \backslash \mathbb{Z}^{\geq 0}$, we have $\left[z^{n}\right](1-\lambda z)^{\alpha} \sim \frac{\lambda^{n}}{n^{\alpha+1} \Gamma(-\alpha)}$, as $n \rightarrow \infty$.

binomial theorem

We can also obtain the subexponential growth of $\left(y_{n}\right)$ from a generalized version of the binomial theorem.

Theorem

For $\lambda \in \mathbb{R}^{+}$, and $\alpha \in \mathbb{C} \backslash \mathbb{Z}^{\geq 0}$, we have $\left[z^{n}\right](1-\lambda z)^{\alpha} \sim \frac{\lambda^{n}}{n^{\alpha+1} \Gamma(-\alpha)}$, as $n \rightarrow \infty$.

In the case $y(x)=\frac{1-\sqrt{1-4 x}}{2}$, this gives $($ since $\Gamma(-1 / 2)=-2 \sqrt{\pi})$:

$$
y_{n} \sim \frac{-1}{2} \cdot \frac{4^{n}}{n^{3 / 2} \Gamma(-1 / 2)}=\frac{4^{n-1}}{n^{3 / 2} \sqrt{\pi}}
$$

transfer theorem

This example is nice, but what if we can't solve for $y(x)$ exactly? Or what if we can solve for $y(x)$, but it's not of the form $(1-\lambda z)^{\alpha}$?

transfer theorem

This example is nice, but what if we can't solve for $y(x)$ exactly? Or what if we can solve for $y(x)$, but it's not of the form $(1-\lambda z)^{\alpha}$?

Theorem (Flajolet, Odlyzko, 1990)

For $\lambda \in \mathbb{R}^{+}$and $\alpha \in \mathbb{C} \backslash \mathbb{Z}^{\geq 0}$, if $y(x)=\sum_{n \geq 1} y_{n} x^{n}$ is analytic in a Pac-Man domain Δ around its disk of convergence, then

$$
y(z) \sim(1-\lambda z)^{\alpha} \text { as } z \rightarrow(1 / \lambda) \text { in } \Delta \Longrightarrow\left[x^{n}\right] y(x) \sim \frac{\lambda^{n}}{n^{\alpha+1} \Gamma(-\alpha)} \text { as } n \rightarrow \infty .
$$

transfer theorem

Example 2: Let y_{n} count the number of trees with n nodes, such that each node has 0,1 , or 2 children. Then with $A(x)=1+x+x^{2}$, we have

$$
y(x)=x A(y(x))=1+x y(x)+x y(x)^{2} .
$$

transfer theorem

Example 2: Let y_{n} count the number of trees with n nodes, such that each node has 0,1 , or 2 children. Then with $A(x)=1+x+x^{2}$, we have

$$
y(x)=x A(y(x))=1+x y(x)+x y(x)^{2}
$$

$$
\begin{aligned}
y(x)= & \frac{1-x-\sqrt{(1-3 x)(1+x)}}{2 x}=\frac{1-x}{2 x}-\sqrt{1-3 x} \cdot \frac{\sqrt{x+1}}{2 x} \\
= & {\left[1+\frac{3}{2}(1-3 x)+\mathcal{O}(1-3 x)^{2}\right] } \\
& -(1-3 x)^{1 / 2}\left[\sqrt{3}+\frac{7 \sqrt{3}}{8}(1-3 x)+\mathcal{O}(1-3 x)^{2}\right] \\
= & 1-\sqrt{3}(1-3 x)^{1 / 2}+\mathcal{O}(1-3 x) .
\end{aligned}
$$

transfer theorem

Example 2: Let y_{n} count the number of trees with n nodes, such that each node has 0,1 , or 2 children. Then with $A(x)=1+x+x^{2}$, we have

$$
y(x)=x A(y(x))=1+x y(x)+x y(x)^{2}
$$

$$
\begin{aligned}
y(x)= & \frac{1-x-\sqrt{(1-3 x)(1+x)}}{2 x}=\frac{1-x}{2 x}-\sqrt{1-3 x} \cdot \frac{\sqrt{x+1}}{2 x} \\
= & {\left[1+\frac{3}{2}(1-3 x)+\mathcal{O}(1-3 x)^{2}\right] } \\
& -(1-3 x)^{1 / 2}\left[\sqrt{3}+\frac{7 \sqrt{3}}{8}(1-3 x)+\mathcal{O}(1-3 x)^{2}\right] \\
= & 1-\sqrt{3}(1-3 x)^{1 / 2}+\mathcal{O}(1-3 x) .
\end{aligned}
$$

$y(x)-1 \sim-\sqrt{3}(1-3 x)^{1 / 2}$, so that $y_{n} \sim \frac{-\sqrt{3} \cdot 3^{n}}{\Gamma(-1 / 2) n^{3 / 2}}=\frac{\sqrt{3}}{2 \sqrt{\pi}} \cdot \frac{3^{n}}{n^{3 / 2}}$.

simply generated trees

Examples 1 and 2 both satisfy a similar functional equation and show a subexponential growth factor of $n^{-3 / 2}$.

simply generated trees

Examples 1 and 2 both satisfy a similar functional equation and show a subexponential growth factor of $n^{-3 / 2}$.

Let $\left(a_{n}\right)_{n \geq 1}$ and $\left(y_{n}\right)_{n \geq 1}$ be sequences of non-negative integers with generating functions $\bar{A}(x)=1+\sum_{n \geq 1} a_{n} x^{n}$ and $y(x)=\sum_{n \geq 1} y_{n} x^{n}$, satisfying:

$$
y(x)=x A(y(x))
$$

simply generated trees

Examples 1 and 2 both satisfy a similar functional equation and show a subexponential growth factor of $n^{-3 / 2}$.

Let $\left(a_{n}\right)_{n \geq 1}$ and $\left(y_{n}\right)_{n \geq 1}$ be sequences of non-negative integers with generating functions $\bar{A}(x)=1+\sum_{n \geq 1} a_{n} x^{n}$ and $y(x)=\sum_{n \geq 1} y_{n} x^{n}$, satisfying:

$$
y(x)=x A(y(x))
$$

Combinatorial interpretation: y_{n} counts the number of rooted trees with n nodes (including the root), such that for each $i \geq 1$, each internal node having i children can be colored with one of a_{i} colors. A family of rooted trees is called simply generated if counted by a sequence $\left(y_{n}\right)$ satisfying the above functional equation for some $A(x)$ with non-negative coefficients.

previously known facts

Call a sequence $\left(a_{n}\right)_{n \geq 0}$ of non-negative integers "good" if:
(1) $a_{0}=1, a_{n} \geq 1$ eventually,
(2) $\left(a_{n}\right)$ is not supported on an arithmetic progression in \mathbb{N},
(3) $y(x)$ has finite radius of convergence r.
(Think of an eventually increasing sequence.)

previously known facts

Call a sequence $\left(a_{n}\right)_{n \geq 0}$ of non-negative integers "good" if:
(1) $a_{0}=1, a_{n} \geq 1$ eventually,
(2) $\left(a_{n}\right)$ is not supported on an arithmetic progression in \mathbb{N},
(3) $y(x)$ has finite radius of convergence r.
(Think of an eventually increasing sequence.)
If $\left(a_{n}\right)_{n \geq 0}$ is good, then:
(1) $y(r)<\infty$.
(2) From $y(x)=A(y(x))$, the radius of convergence of $A(x)$, say R, satisfies:

$$
y(r) \leq R
$$

previously known facts

Call a sequence $\left(a_{n}\right)_{n \geq 0}$ of non-negative integers "good" if:
(1) $a_{0}=1, a_{n} \geq 1$ eventually,
(2) $\left(a_{n}\right)$ is not supported on an arithmetic progression in \mathbb{N},
(3) $y(x)$ has finite radius of convergence r.
(Think of an eventually increasing sequence.)
If $\left(a_{n}\right)_{n \geq 0}$ is good, then:
(1) $y(r)<\infty$.
(2) From $y(x)=A(y(x))$, the radius of convergence of $A(x)$, say R, satisfies:

$$
y(r) \leq R
$$

This inequality is what we want to study - when is it sharp?

previously known facts

From $y(x)=x A(y(x))$, one can check that the inverse function y^{-1} is given by

$$
\psi(x)=\frac{x}{A(x)}
$$

previously known facts

From $y(x)=x A(y(x))$, one can check that the inverse function y^{-1} is given by

$$
\psi(x)=\frac{x}{A(x)} .
$$

Theorem (Meir, Moon, 1978)

Let R denote the radius of convergence of $A(x)$, for $\left(a_{n}\right)_{n \geq 0}$ good. If there exists $\tau \in(0, R)$, such that $A(\tau)-\tau A^{\prime}(\tau)=0$, then the following holds:

previously known facts

From $y(x)=x A(y(x))$, one can check that the inverse function y^{-1} is given by

$$
\psi(x)=\frac{x}{A(x)} .
$$

Theorem (Meir, Moon, 1978)

Let R denote the radius of convergence of $A(x)$, for $\left(a_{n}\right)_{n \geq 0}$ good. If there exists $\tau \in(0, R)$, such that $A(\tau)-\tau A^{\prime}(\tau)=0$, then the following holds:
(1) $y(x)$ has radius of convergence $r=\psi(\tau)$, which implies that $y(r)=\tau<R$.

previously known facts

From $y(x)=x A(y(x))$, one can check that the inverse function y^{-1} is given by

$$
\psi(x)=\frac{x}{A(x)}
$$

Theorem (Meir, Moon, 1978)

Let R denote the radius of convergence of $A(x)$, for $\left(a_{n}\right)_{n \geq 0}$ good. If there exists $\tau \in(0, R)$, such that $A(\tau)-\tau A^{\prime}(\tau)=0$, then the following holds:
(1) $y(x)$ has radius of convergence $r=\psi(\tau)$, which implies that $y(r)=\tau<R$.
(2) The coefficient sequence $\left(y_{n}\right)_{n=1}^{\infty}$ satisfies the following asymptotic estimate:

$$
y_{n}=\frac{C}{r^{n} n^{\frac{3}{2}}}\left(1+\mathcal{O}\left(n^{-1}\right)\right),
$$

$$
\text { as } n \rightarrow \infty \text {, where } C=\sqrt{\frac{A(\tau)}{2 \pi A^{\prime \prime}(\tau)}} \text {. }
$$

Recall Example 1: $y(x)=x A(y(x))$, where $A(x)=\frac{1}{1-x}$, and $R=1$. In this case $\psi(x)=x(1-x)$, and $A(x)-x A^{\prime}(x)$ vanishes at $1 / 2$. It follows that $y(x)$ has radius of convergence $\psi(1 / 2)=1 / 4$.

Recall Example 1: $y(x)=x A(y(x))$, where $A(x)=\frac{1}{1-x}$, and $R=1$. In this case $\psi(x)=x(1-x)$, and $A(x)-x A^{\prime}(x)$ vanishes at $1 / 2$. It follows that $y(x)$ has radius of convergence $\psi(1 / 2)=1 / 4$.

Sketch of proof: To establish (1), observe that if $A(\tau)-\tau A^{\prime}(\tau)=0$ for $\tau \in(0, R)$, and we further assume that $y(r)>\tau$, then there is some point z in $(0, r)$ where y is analytic and $y(z)=\tau$. By the Inverse Function Theorem, $0=\psi^{\prime}(\tau)=\left(\frac{d}{d z} y(z)\right)^{-1}$, which implies that $y^{\prime}(z)=\infty$, a contradiction.

Recall Example 1: $y(x)=x A(y(x))$, where $A(x)=\frac{1}{1-x}$, and $R=1$. In this case $\psi(x)=x(1-x)$, and $A(x)-x A^{\prime}(x)$ vanishes at $1 / 2$.
It follows that $y(x)$ has radius of convergence $\psi(1 / 2)=1 / 4$.
Sketch of proof: To establish (1), observe that if $A(\tau)-\tau A^{\prime}(\tau)=0$ for $\tau \in(0, R)$, and we further assume that $y(r)>\tau$, then there is some point z in $(0, r)$ where y is analytic and $y(z)=\tau$. By the Inverse Function Theorem, $0=\psi^{\prime}(\tau)=\left(\frac{d}{d z} y(z)\right)^{-1}$, which implies that $y^{\prime}(z)=\infty$, a contradiction.

Next, if $y(r)<\tau$, then $\psi^{\prime}(y(r)) \neq 0$. Therefore, y admits an analytic continuation to a neighborhood of r, namely the local inverse of ψ at r. This contradicts Pringsheim's Theorem, establishing that $y(r)=\tau$.

previously known facts

Sketch of proof: To establish (2), observe that the function $\psi-r$ has a second-order zero at τ, since $\psi(\tau)=r$ and $\psi^{\prime}(\tau)=0$:

previously known facts

Sketch of proof: To establish (2), observe that the function $\psi-r$ has a second-order zero at τ, since $\psi(\tau)=r$ and $\psi^{\prime}(\tau)=0$:

$$
\psi(z)-r=(z-\tau)^{2} g(z), \quad g \text { holomorphic and non-zero near } \tau
$$

previously known facts

Sketch of proof: To establish (2), observe that the function $\psi-r$ has a second-order zero at τ, since $\psi(\tau)=r$ and $\psi^{\prime}(\tau)=0$:

$$
\psi(z)-r=(z-\tau)^{2} g(z), \quad g \text { holomorphic and non-zero near } \tau \text {. }
$$

This implies that $y-\tau$ behaves locally like a square-root function near r :

previously known facts

Sketch of proof: To establish (2), observe that the function $\psi-r$ has a second-order zero at τ, since $\psi(\tau)=r$ and $\psi^{\prime}(\tau)=0$:

$$
\psi(z)-r=(z-\tau)^{2} g(z), \quad g \text { holomorphic and non-zero near } \tau \text {. }
$$

This implies that $y-\tau$ behaves locally like a square-root function near r :

$$
y(z)-\tau=(z-r)^{1 / 2} h(z), \quad h(z)=\sqrt{1 / g(y(z))}
$$

previously known facts

Sketch of proof: To establish (2), observe that the function $\psi-r$ has a second-order zero at τ, since $\psi(\tau)=r$ and $\psi^{\prime}(\tau)=0$:

$$
\psi(z)-r=(z-\tau)^{2} g(z), \quad g \text { holomorphic and non-zero near } \tau
$$

This implies that $y-\tau$ behaves locally like a square-root function near r :

$$
y(z)-\tau=(z-r)^{1 / 2} h(z), \quad h(z)=\sqrt{1 / g(y(z))}
$$

We see that

$$
y(z)-\tau \sim(z-r)^{1 / 2} h(r)
$$

as $z \rightarrow r$, and the transfer theorem of Flajolet/Odlyzko applies. Thus,

$$
y_{n} \sim \frac{C}{r^{n} n^{3 / 2}} .
$$

criterion for sharpness

Theorem (S., 2020)

Suppose that $\left(a_{n}\right)_{n \geq 0}$ is good and the generating functions $A(x)$ and $y(x)$, with radii of convergence R and r respectively, satisfy $y(x)=x A(y(x))$. Then, the inequality $y(r) \leq R$ is sharp (i.e. $y(r)=R$) if $A(z)-z A^{\prime}(z)$ doesn't vanish on $(0, R)$.

criterion for sharpness

Theorem (S., 2020)

Suppose that $\left(a_{n}\right)_{n \geq 0}$ is good and the generating functions $A(x)$ and $y(x)$, with radii of convergence R and r respectively, satisfy $y(x)=x A(y(x))$. Then, the inequality $y(r) \leq R$ is sharp (i.e. $y(r)=R$) if $A(z)-z A^{\prime}(z)$ doesn't vanish on $(0, R)$.

Corollary

With $A(x)$ and $y(x)$ as above, exactly one of the following is true:

criterion for sharpness

Theorem (S., 2020)

Suppose that $\left(a_{n}\right)_{n \geq 0}$ is good and the generating functions $A(x)$ and $y(x)$, with radii of convergence R and r respectively, satisfy $y(x)=x A(y(x))$. Then, the inequality $y(r) \leq R$ is sharp (i.e. $y(r)=R$) if $A(z)-z A^{\prime}(z)$ doesn't vanish on $(0, R)$.

Corollary

With $A(x)$ and $y(x)$ as above, exactly one of the following is true:
(1) $A(z)-z A^{\prime}(z)$ is non-vanishing for $z \in(0, R)$, in which case $R=y(r)$.
(2) $R>y(r)=\tau$, where τ is the unique solution to $A(\tau)-\tau A^{\prime}(\tau)=0$ on $(0, R)$, and $y_{n}=C r^{n} n^{-3 / 2}(1+o(1))$ as $n \rightarrow \infty$, for some $C>0$.

criterion for sharpness

Theorem (S., 2020)

Suppose that $\left(a_{n}\right)_{n \geq 0}$ is good and the generating functions $A(x)$ and $y(x)$, with radii of convergence R and r respectively, satisfy $y(x)=x A(y(x))$. Then, the inequality $y(r) \leq R$ is sharp (i.e. $y(r)=R$) if $A(z)-z A^{\prime}(z)$ doesn't vanish on $(0, R)$.

Corollary

With $A(x)$ and $y(x)$ as above, exactly one of the following is true:
(1) $A(z)-z A^{\prime}(z)$ is non-vanishing for $z \in(0, R)$, in which case $R=y(r)$.
(2) $R>y(r)=\tau$, where τ is the unique solution to $A(\tau)-\tau A^{\prime}(\tau)=0$ on $(0, R)$, and $y_{n}=C r^{n} n^{-3 / 2}(1+o(1))$ as $n \rightarrow \infty$, for some $C>0$.

In particular, the absence of the $n^{-3 / 2}$ polynomial factor in the asymptotic expansion of y_{n} certifies that the inequality $y(r) \leq R$ is actually sharp.

application in Lie theory

For each positive integer n, let a_{n} denote the number of triangulations of a regular n-gon, such that the minimum degree of each internal vertex is 6 . The sequence begins

$$
\left(a_{n}\right)_{n=1}^{\infty}=0,1,1,2,5,15,50,181,697, \ldots
$$

application in Lie theory

For each positive integer n, let a_{n} denote the number of triangulations of a regular n-gon, such that the minimum degree of each internal vertex is 6 . The sequence begins

$$
\left(a_{n}\right)_{n=1}^{\infty}=0,1,1,2,5,15,50,181,697, \ldots
$$

For each positive integer n, let b_{n} denote the dimension of the space of invariant tensors in the n-th tensor power of the 7-dim fundamental representation of the exceptional simple Lie algebra G_{2}. The sequence begins

$$
\left(b_{n}\right)_{n=1}^{\infty}=0,1,1,4,10,35,120,455,1792, \ldots
$$

application in Lie theory

Let $A(x)=1+\sum_{n=1}^{\infty} a_{n} x^{n}$, and with $y_{1}=1$ let $y_{n}=b_{n-1}$ for $n \geq 2$, and let $y(x)=\sum_{n=1}^{\infty} y_{n} x^{n}$.

application in Lie theory

Let $A(x)=1+\sum_{n=1}^{\infty} a_{n} x^{n}$, and with $y_{1}=1$ let $y_{n}=b_{n-1}$ for $n \geq 2$, and let $y(x)=\sum_{n=1}^{\infty} y_{n} x^{n}$.

Theorem (Kuperberg, 1996)

The identity of formal power series holds:

$$
y(x)=x A(y(x))
$$

Furthermore, $y(x)$ has radius of convergence $r=1 / 7$, and hence

$$
\limsup _{n \rightarrow \infty} \sqrt[n]{a_{n}} \leq \frac{1}{y(1 / 7)}
$$

application in Lie theory

Let $A(x)=1+\sum_{n=1}^{\infty} a_{n} x^{n}$, and with $y_{1}=1$ let $y_{n}=b_{n-1}$ for $n \geq 2$, and let $y(x)=\sum_{n=1}^{\infty} y_{n} x^{n}$.

Theorem (Kuperberg, 1996)

The identity of formal power series holds:

$$
y(x)=x A(y(x))
$$

Furthermore, $y(x)$ has radius of convergence $r=1 / 7$, and hence

$$
\limsup _{n \rightarrow \infty} \sqrt[n]{a_{n}} \leq \frac{1}{y(1 / 7)}
$$

Conjecture (Kuperberg, 1996)

$$
y(r)=R, \quad \text { i.e. } \quad \limsup _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\frac{1}{y(1 / 7)} \approx 6.811
$$

application in Lie theory

Theorem (S., 2020)
Let $\left(a_{n}\right)_{n=0}^{\infty}$ and $y(x)$ be as above. Then,

application in Lie theory

Theorem (S., 2020)
Let $\left(a_{n}\right)_{n=0}^{\infty}$ and $y(x)$ be as above. Then,

$$
a_{n}=\left(\frac{1}{y(1 / 7)}\right)^{n+o(n)} \quad \text { as } n \rightarrow \infty .
$$

application in Lie theory

Theorem (S., 2020)

Let $\left(a_{n}\right)_{n=0}^{\infty}$ and $y(x)$ be as above. Then,

$$
a_{n}=\left(\frac{1}{y(1 / 7)}\right)^{n+o(n)} \quad \text { as } n \rightarrow \infty .
$$

Furthermore,

$$
\frac{1}{y(1 / 7)}=\sup _{n \in \mathbb{N}} \sqrt[n]{a_{n}}=\frac{5 \pi}{8575 \pi-15552 \sqrt{3}} \approx 6.8211
$$

application in Lie theory

Theorem (S., 2020)

Let $\left(a_{n}\right)_{n=0}^{\infty}$ and $y(x)$ be as above. Then,

$$
a_{n}=\left(\frac{1}{y(1 / 7)}\right)^{n+o(n)} \quad \text { as } n \rightarrow \infty
$$

Furthermore,

$$
\frac{1}{y(1 / 7)}=\sup _{n \in \mathbb{N}} \sqrt[n]{a_{n}}=\frac{5 \pi}{8575 \pi-15552 \sqrt{3}} \approx 6.8211
$$

Furthermore,

$$
b_{n}=K\left(7^{n} / n^{7}\right)(1+o(1)), \text { as } n \rightarrow \infty
$$

for a constant $K \approx 2627.6$

outline of proof

(1) Derive asymptotics for $\left(b_{n}\right)_{n \geq 1}$:

$$
b_{n} \sim K \frac{7^{n}}{n^{7}}, \text { as } n \rightarrow \infty
$$

(2) The asymptotics of $\left(b_{n}\right)_{n \geq 1}$, specifically the presence of the n^{-7} polynomial factor as opposed to $n^{-3 / 2}$, indicates by the corollary above that $A(z)-z A^{\prime}(z)$ does not vanish on $(0, R)$, and hence that $R=y(r)=y(1 / 7)$.
(3) It follows that

$$
\limsup _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\frac{1}{y(1 / 7)}
$$

With a little more work this becomes an actual limit, implying the asymptotic expression for a_{n}.
(4) The last step is to evaluate $y(1 / 7)$ exactly.

some details: (1) asymptotics for $\left(b_{n}\right)_{n \geq 1}$

(1) b_{n} is the coefficient of $x^{n} y^{n}$ in $W M^{n}$ (Kuperberg, 1994), where

$$
M(x, y)=1+x+y+x y+x^{2} y+x y^{2}+(x y)^{2}
$$

and

$$
\begin{aligned}
W(x, y)=x^{-2} y^{-3}\left(x^{2} y^{3}\right. & -x y^{3}+x^{-1} y^{2}-x^{-2} y+x^{-3} y^{-1}-x^{-3} y^{-2} \\
& \left.+x^{-2} y^{-3}-x^{-1} y^{-3}+x y^{-2}-x^{2} y^{-1}+x^{3} y-x^{3} y^{2}\right)
\end{aligned}
$$

Use a saddle-point analysis to evaluate this coefficient:

$$
b_{n}=\frac{1}{(2 \pi i)^{2}} \oint \oint\left[W\left(z_{1}, z_{2}\right) \cdot M\left(z_{1}, z_{2}\right)^{n} \cdot \frac{1}{\left(z_{1} z_{2}\right)^{(n+1)}}\right] d z_{1} d z_{2} .
$$

Surprisingly, integrals involving lower order terms vanish, and we recover the factor n^{-7} as well as

$$
K=\frac{4117715 \sqrt{3}}{864 \pi} \approx 2627.56
$$

some details: (4) value of $y(1 / 7)$

(4) Proof that $y(1 / 7)=\frac{5 \pi}{8575 \pi-15552 \sqrt{3}}$.

Theorem (Bostan, Tirrell, Westbury, Zhang, 2019)

$$
y(x)=\frac{1}{30 x^{4}}\left[R_{1} \cdot{ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 2 ; \phi(x)\right)+R_{2} \cdot{ }_{2} F_{1}\left(\frac{2}{3}, \frac{4}{3} ; 3 ; \phi(x)\right)+5 P\right],
$$

where

$$
\begin{aligned}
R_{1}(x) & =(x+1)^{2}\left(214 x^{3}+45 x^{2}+60 x+5\right)(x-1)^{-1} \\
R_{2}(x) & =6 x^{2}(x+1)^{2}\left(101 x^{2}+74 x+5\right)(x-1)^{-2}, \\
\phi(x) & =27(x+1) x^{2}(x-1)^{-3} \\
P(x) & =28 x^{4}+66 x^{3}+46 x^{2}+15 x+1
\end{aligned}
$$

some details: (4) value of $y(1 / 7)$

(4) Proof that $y(1 / 7)=\frac{5 \pi}{8575 \pi-15552 \sqrt{3}}$.

Evaluating the polynomials at $x=\frac{1}{7}$, the formula simplifies to
$y\left(\frac{1}{7}\right)=\frac{7^{6}}{30}\left[\frac{-55296}{2401} \cdot{ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 2 ; 1\right)+\frac{9216}{2401} \cdot 2 F_{1}\left(\frac{2}{3}, \frac{4}{3} ; 3 ; 1\right)+\frac{150}{7}\right]$
We use facts about the gamma function, namely that $\Gamma(z+1)=z \Gamma(z)$ for $z \notin \mathbb{Z}_{\leq 0}$ and the following:

$$
\begin{gathered}
{ }_{2} F_{1}(a, b ; c ; 1)=\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)} \quad(\operatorname{Re}(c)>\operatorname{Re}(a+b)), \\
\Gamma(z) \Gamma(1-z)=\frac{\pi}{\sin (\pi z)} \quad(z \in \mathbb{C}) .
\end{gathered}
$$

These suffice to simplify the above expression for $y\left(\frac{1}{7}\right)$.

Thank you.

Thank you for the opportunity to speak today!
For more details, there is a draft on the arXiv with the same title as the talk, although a more polished version will be forthcoming soon.

