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Overview

@ Simply generated trees and the main inequality: y(r) < R
o Criterion for asymptotic sharpness: y(r)=R
@ Application in Lie theory: Kuperberg's 1996 conjecture
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trees

A rooted tree is an undirected acyclic connected graph with a
distinguished point, the root. Subtrees dangling from a node are ordered
amongst themselves.

A
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trees

A rooted tree is an undirected acyclic connected graph with a

distinguished point, the root. Subtrees dangling from a node are ordered
amongst themselves.

A

We're interested in asymptotically counting the
number of trees with n nodes, subject to certain conditions.

Example 1: Suppose each node in a tree is allowed to have an arbitrary
(non-negative integer) number of children. Such a tree is sometimes called
a “planted plane tree.” What can be said about y,, the number of planted
plane trees with n nodes?
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generating functions

One approach is to use a generating function. We let

y(x) = yax"

n>1

be the generating function for (y,)o2; .




generating functions

One approach is to use a generating function. We let

y(x) = yax"

n>1
be the generating function for (y,)o2; .
Then y(x) satisfies a functional equation:

y(x) = 1_7)/()0

= x +xy(x) + xy ()2 + xy(x)° + - -
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generating functions

One approach is to use a generating function. We let

y(x) = yax"

n>1

be the generating function for (y,)o2; .
Then y(x) satisfies a functional equation:
X
y(x) = ——
=150
= x 4 xy(x) + xy(x)* 4+ xy(x)® + - --

() = ¥A(y(x)|
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generating functions

Idea: A tree of n nodes is built recursively by gluing k subtrees together at
the root, for some 1 < k < n. The coefficient [x"](xy(x)¥) is the number
of trees having n nodes and built by gluing k subtrees at the root.

y(x) = x + xy(x) + xy(x)® + xy(x)3 + - --
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generating functions

Idea: A tree of n nodes is built recursively by gluing k subtrees together at
the root, for some 1 < k < n. The coefficient [x"](xy(x)¥) is the number
of trees having n nodes and built by gluing k subtrees at the root.

y(x) = x + xy(x) + xy(x)® + xy(x)3 + - --
ya = [X*ly(x)
= [y (x) + [Xly(x)? + [¥]y(x)® =5
1 subt.ree . 2 subtrees . Ssub:ees
A NIVA N/ \\
o o -] e o
/\ | I
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generating functions

How can we use y(x) to understand (yn)n>17




generating functions

How can we use y(x) to understand (yn)n>17

The functional equation y(x) = T=,(x) can be solved exactly:

1—

1—+v1—4x
) =—5—

= x4+ x>+ 2x3 +5x* +14x> +42x5 ...




generating functions

How can we use y(x) to understand (yn)n>17

The functional equation y(x) = T=,(x) can be solved exactly:

1—-—+v1-—4x

y(x) = 5
= x4+ x>+ 2x3 +5x* +14x> +42x5 ...

In fact, ypr1 = n}rl (2:) is the nth Catalan number.

We see immediately that limsup,, .., v/y» = 4, by the principle that the
radius of convergence of an analytic function is the distance from the
origin to its nearest singularity. This gives the exponential growth:

Yo ~ 470 a5 n 5 0o
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binomial theorem

We can also obtain the subexponential growth of (y,) from a
generalized version of the binomial theorem.




binomial theorem

We can also obtain the subexponential growth of (y,) from a
generalized version of the binomial theorem.

)\n
A (—a)

For A € R, and a € C\ Z=°, we have [z"](1 — \z)® ~
n — oo.

as
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binomial theorem

We can also obtain the subexponential growth of (y,) from a
generalized version of the binomial theorem.

n

as

For A € RT, and a € C\ ZZ2°, we have [z"](1 — A\z)* ~ #

(—a)’
n— oo.

In the case y(x) = 2% this gives (since ['(~1/2) = —2/7):

-1 4qn 4n71

2 mer(—1/2)  mRym

Yn ~
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transfer theorem

This example is nice, but what if we can’t solve for y(x) exactly? Or what if we
can solve for y(x), but it's not of the form (1 — Az)*?




transfer theorem

This example is nice, but what if we can’t solve for y(x) exactly? Or what if we

can solve for y(x), but it's not of the form (1 — Az)*?

Theorem (Flajolet, Odlyzko, 1990)

For A € Rt and a € C\ Z=°, if y(x) = ", <, yax" is analytic in a Pac-Man
domain A around its disk of convergence, then

n

y(z)~(1=X2)* as z— (1/A) in A = [x"]y(x)w)\— as n — oo.

n*H T (—a)

A

»\-
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transfer theorem

Example 2: Let y, count the number of trees with n nodes, such that
each node has 0,1, or 2 children. Then with A(x) = 1+ x + x2, we have

() = XA (0) | = 1+ xy(x) + xy(x)?.
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transfer theorem

Example 2: Let y, count the number of trees with n nodes, such that
each node has 0,1, or 2 children. Then with A(x) = 1+ x + x2, we have

() = XA (0) | = 1+ xy(x) + xy(x)?.

J(x) = 1—x— (12X—3x)(l+x) _ 12;)(* T3 \/z;rl
3
= [1—|—2(1—3X)—|—(9(1—3x)2}

—(1-3x)"?

=1-3(1-3x)Y2+ 01 - 3x).

\f+i(173 )+(9(13x)2]
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transfer theorem

Example 2: Let y, count the number of trees with n nodes, such that
each node has 0,1, or 2 children. Then with A(x) = 1+ x + x2, we have

() = XA (0) | = 1+ xy(x) + xy(x)?.

J(x) = 1—x— (12X—3x)(l+x) _ 12;)(* T3 \/z;rl
3
= [1—|—2(1—3X)—|—(9(1—3x)2}

—(1-3x)"?

=1-3(1-3x)Y2+ 01 - 3x).

\f+i(173 )+(9(13x)2]

y(x) =1~ —/3(1 = 3x)'/2, so that y, ~ % = % . % :
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simply generated trees

Examples 1 and 2 both satisfy a similar functional equation and show a
subexponential growth factor of n=3/2.
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simply generated trees

Examples 1 and 2 both satisfy a similar functional equation and show a
subexponential growth factor of n=3/2.

Let (an)n>1 and (yn)n>1 be sequences of non-negative integers with
generating functions A(x) =1+ > ; anx" and y(x) = >_ 51 ynx",
satisfying:

() = ¥A(y(x)|
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simply generated trees

Examples 1 and 2 both satisfy a similar functional equation and show a
subexponential growth factor of n=3/2.

Let (an)n>1 and (yn)n>1 be sequences of non-negative integers with
generating functions A(x) =1+ )" o, apx” and y(x) = >~ Yax",
satisfying:

() = ¥A(y(x)|

Combinatorial interpretation: y, counts the number of rooted trees with
n nodes (including the root), such that for each / > 1, each internal node
having i children can be colored with one of a; colors. A family of rooted
trees is called simply generated if counted by a sequence (y,) satisfying
the above functional equation for some A(x) with non-negative
coefficients.
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previously known facts

Call a sequence (ap)n>0 of non-negative integers “good” if:
Q a3y =1, a, > 1 eventually,
@ (an) is not supported on an arithmetic progression in N,
@ y(x) has finite radius of convergence r.

(Think of an eventually increasing sequence.)
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Q a3y =1, a, > 1 eventually,
@ (an) is not supported on an arithmetic progression in N,
@ y(x) has finite radius of convergence r.

(Think of an eventually increasing sequence.)

If (an)n>0 is good, then:
Q y(r) < .

@ From ‘y(x) = A(y(x)) ‘ the radius of convergence of A(x), say R,
satisfies:

y(r) <R
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previously known facts

Call a sequence (ap)n>0 of non-negative integers “good” if:
Q a3y =1, a, > 1 eventually,
@ (an) is not supported on an arithmetic progression in N,
@ y(x) has finite radius of convergence r.

(Think of an eventually increasing sequence.)

If (an)n>0 is good, then:
Q y(r) < .

@ From ‘y(x) = A(y(x)) ‘ the radius of convergence of A(x), say R,
satisfies:

y(r) <R

This inequality is what we want to study — when is it sharp?
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previously known facts

From ‘y(x) = xA(y(x)) ‘ one can check that the inverse function y~! is

given by
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previously known facts

From ‘y(x) = xA(y(x)) ‘ one can check that the inverse function y~! is

given by

Theorem (Meir, Moon, 1978)

Let R denote the radius of convergence of A(x), for (ap)n>0 good. If there exists
7 € (0, R), such that A(T) — TA'(1) = 0, then the following holds:

v
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previously known facts

From ‘y(x) = xA(y(x)) ‘ one can check that the inverse function y~! is

given by

Theorem (Meir, Moon, 1978)

Let R denote the radius of convergence of A(x), for (ap)n>0 good. If there exists
7 € (0, R), such that A(T) — TA'(1) = 0, then the following holds:

(1) y(x) has radius of convergence r = (1), which implies that y(r) =7 < R.

v
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previously known facts

1

From ‘y(x) = xA(y(x)) ‘ one can check that the inverse function y—* is
given by
bs
Y(x) = m

Theorem (Meir, Moon, 1978)

Let R denote the radius of convergence of A(x), for (ap)n>0 good. If there exists
7 € (0, R), such that A(T) — TA'(1) = 0, then the following holds:

(1) y(x) has radius of convergence r = (1), which implies that y(r) =7 < R.

(2) The coefficient sequence (y,)2, satisfies the following asymptotic estimate:

C
Yn = 3(1+O(n_1))»
rn2

— A(r)
as n — oo, where C = /577 -

v
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Recall Example 1: y(x) = xA(y(x)), where A(x) = 1L, and R = 1.

In this case ¥(x) = x(1 — x), and A(x) — xA’(x) vanishes at 1/2.
It follows that y(x) has radius of convergence (1/2) =1/4.
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Recall Example 1: y(x) = xA(y(x)), where A(x) = 1L, and R = 1.
In this case ¥(x) = x(1 — x), and A(x) — xA’(x) vanishes at 1/2.
It follows that y(x) has radius of convergence (1/2) =1/4.

Sketch of proof: To establish (1), observe that if A(7) — 7A(7) = 0 for

7 € (0, R), and we further assume that y(r) > 7, then there is some point z in
(0, r) where y is analytic and y(z) = 7. By the Inverse Function Theorem,
0=9'(r) = (%y(z))*l7 which implies that y’(z) = oo, a contradiction.
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Recall Example 1: y(x) = xA(y(x)), where A(x) = 1L, and R = 1.

In this case ¥(x) = x(1 — x), and A(x) — xA’(x) vanishes at 1/2.
It follows that y(x) has radius of convergence (1/2) =1/4.

Sketch of proof: To establish (1), observe that if A(7) — 7A(7) = 0 for

7 € (0, R), and we further assume that y(r) > 7, then there is some point z in
(0, r) where y is analytic and y(z) = 7. By the Inverse Function Theorem,
0=9'(r) = (%y(z))*l7 which implies that y’(z) = oo, a contradiction.

Next, if y(r) < 7, then ¢'(y(r)) # 0. Therefore, y admits an analytic
continuation to a neighborhood of r, namely the local inverse of ¢ at r. This
contradicts Pringsheim’s Theorem, establishing that y(r) = 7.

(D
Lrs

w

\3("/' \t “z

| ,
0 m

v
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previously known facts

Sketch of proof: To establish (2), observe that the function i) — r has a
second-order zero at 7, since ¢)(7) = r and /(1) =0
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Sketch of proof: To establish (2), observe that the function i) — r has a
second-order zero at 7, since ¢)(7) = r and /(1) =0

Y(z) — r=(z—7)?g(z), g holomorphic and non-zero near 7.
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second-order zero at 7, since ¢)(7) = r and /(1) =0

Y(z) — r=(z—7)?g(z), g holomorphic and non-zero near 7.

This implies that y — 7 behaves locally like a square-root function near r:
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previously known facts

Sketch of proof: To establish (2), observe that the function i) — r has a
second-order zero at 7, since ¢)(7) = r and /(1) =0

Y(z) — r=(z—7)?g(z), g holomorphic and non-zero near 7.
This implies that y — 7 behaves locally like a square-root function near r:

y(z) =7 =(z=n)"?h(z). h(z) = /1/g(y(2))

We see that
y(z) =7~ (z = r)/?h(r),

as z — r, and the transfer theorem of Flajolet/Odlyzko applies. Thus,

C
Yn ™~ a3
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criterion for sharpness

Theorem (S., 2020)

Suppose that (an)n>0 is good and the generating functions A(x) and y(x),
with radii of convergence R and r respectively, satisfy | y(x) = xA(y(x)) |

Then, the inequality | y(r) < R |is sharp (i.e. y(r) = R) if A(z) — zA'(z)
doesn't vanish on (0, R).
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Corollary

With A(x) and y(x) as above, exactly one of the following is true:
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criterion for sharpness

Theorem (S., 2020)

Suppose that (an)n>0 is good and the generating functions A(x) and y(x),
with radii of convergence R and r respectively, satisfy | y(x) = xA(y(x)) |

Then, the inequality | y(r) < R |is sharp (i.e. y(r) = R) if A(z) — zA'(z)
doesn't vanish on (0, R).

Corollary

With A(x) and y(x) as above, exactly one of the following is true:

(1) A(z) — zA'(z) is non-vanishing for z € (0, R), in which case R = y(r).

(2) R> y(r) =, where T is the unique solution to A(t) — TA (1) =0
on (0,R), and y, = Cr"n=3/2(1 + o(1)) as n — oo, for some C > 0.

v
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criterion for sharpness

Theorem (S., 2020)

Suppose that (an)n>0 is good and the generating functions A(x) and y(x),
with radii of convergence R and r respectively, satisfy‘y(x) = xA(y(x)) |

Then, the inequa/itym is sharp (i.e. y(r) = R) if A(z) — zA/(2)

doesn't vanish on (0, R).

Corollary

With A(x) and y(x) as above, exactly one of the following is true:

(1) A(z) — zA'(z) is non-vanishing for z € (0, R), in which case R = y(r).

(2) R > y(r) =, where T is the unique solution to A(T) — TA'(1) =0
on (0,R), and y, = Cr"n=3/2(1 + o(1)) as n — oo, for some C > 0.

v

In particular, the absence of the n=3/2 polynomial factor in the asymptotic
expansion of y, certifies that the inequality y(r) < R is actually sharp.
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application in Lie theory

For each positive integer n, let a, denote the number of triangulations of a
regular n-gon, such that the minimum degree of each internal vertex is 6. The
sequence begins

NE

an)%, =0,1,1,2,5,15,50,181, 697, . ..
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application in Lie theory

For each positive integer n, let a, denote the number of triangulations of a
regular n-gon, such that the minimum degree of each internal vertex is 6. The
sequence begins

For each positive integer n, let b, denote the dimension of the space of invariant

tensors in the n-th tensor power of the 7-dim fundamental representation of the
exceptional simple Lie algebra G;. The sequence begins

(by)22, = 0,1,1,4,10,35,120,455,1792, . ..

an)%, =0,1,1,2,5,15,50,181, 697, . ..
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application in Lie theory

Let A(x) =1+ 77, anx", and with y; =1 let y, = b,_1 for n > 2, and
let y(x) =302 ynx".
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application in Lie theory

Let A(x) =1+ 77, anx", and with y; =1 let y, = b,_1 for n > 2, and
let y(x) =02 ynx"

Theorem (Kuperberg, 1996)

The identity of formal power series holds:

y(x) = xA(y(x))

Furthermore, y(x) has radius of convergence r = 1/7, and hence

li VER
im Sup /3y < (1/7)
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application in Lie theory

Let A(x) =1+ 77, anx", and with y; =1 let y, = b,_1 for n > 2, and
let y(x) =02 ynx"

Theorem (Kuperberg, 1996)

The identity of formal power series holds:

y(x) = xA(y(x))

Furthermore, y(x) has radius of convergence r = 1/7, and hence

li VER
im Sup /3y < (1/7)

Conjecture (Kuperberg, 1996)

r) =R, i.e. limsu a, = ~ 6.811.
y(r) HOopx/_ (1/7)
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application in Lie theory

Theorem (S., 2020)
Let (an)72 and y(x) be as above. Then,
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application in Lie theory

Theorem (S., 2020)
Let (an)72 and y(x) be as above. Then,

1 n+o(n)
an =\ —¥—= as n — o0.
’ <)/(1/7)>
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application in Lie theory

Theorem (S., 2020)

Let (an)72 and y(x) be as above. Then,

1 n+o(n)
a —_— as n — oo.
! <y(1/ 7))
Furthermore,
1 5
=sup y/an = ~ 6.8211 .
y(1/7) ~ nek 85757 — 15552/3
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application in Lie theory

Theorem (S., 2020)
Let (an)72 and y(x) be as above. Then,

1 n+o(n)
an =\ —¥—= as n — o0.
’ <)/(1/7)>

Furthermore,
1 5
= sup /a, = ~ 6.8211 .
y(1/7) ek V" T 85757 — 15552v/3
Furthermore,

by, = K(7"/n")(1 4+ o(1)), as n — oo,
for a constant K ~ 2627.6
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outline of proof

(1) Derive asymptotics for (bp)n>1:

n

7
b, ~ K

= as n — 0.
n

(2) The asymptotics of (b,)n>1, specifically the presence of the n~—'
polynomial factor as opposed to n—3/2, indicates by the corollary
above that A(z) — zA'(z) does not vanish on (0, R), and hence that

R =y(r) =y(1/7).
(3) It follows that

s Van =y

With a little more work this becomes an actual limit, implying the
asymptotic expression for a.

(4) The last step is to evaluate y(1/7) exactly.
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some details: (1) asymptotics for (b,)n>1

(1) by is the coefficient of x"y"” in WM™ (Kuperberg, 1994), where

M(x,y) =1+ x+y +xy + X2y + xy> + (xy)?,

and

W(x,y) =x2y3(x%y3 —xy® + x71y? = x72y 4+ x 3y - x73y 72

+X72y73—X71y73+Xy72—X y~ +Xy—X3y2).

Use a saddle-point analysis to evaluate this coefficient:

n 1
n 27” f% |: 21,22 (21,22) . W d21 dZ2.

Surprisingly, integrals involving lower order terms vanish, and we recover the

factor n=7 as well as
_ 4117715V3

~ 2627.56 .
864r
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some details: (4) value of y(1/7)

(4) Proof that y(1/7) = 857571'—5%

Theorem (Bostan, Tirrell, Westbury, Zhang, 2019)

1 12 2 4
y(x) = 304 [Rl 2F1 <3 3 12, d(x )) + Ra-2F (3 3 )3, ¢(X)> +5P] ;
where
Ri(x) = (x + 1)?(214x3 4 45x% + 60x + 5)(x — 1)1,
Ro(x) = 6x%(x 4+ 1)?(101x° + 74x 4 5)(x — 1) 2
$(x) = 27(x + 1)x*(x = 1) 73,
P(x) = 28x* 4 66x> + 46x° + 15x + 1.
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some details: (4) value of y(1/7)

(4) Proof that y(1/7) = 857571'—5%

Evaluating the polynomials at x = =, the formula simplifies to

1 7% [—55296 12 9216 2 4 150
y(7>_30[ 2401 2F1<3 3 21) 2401 2F1<3 3 31) 7 ]
We use facts about the gamma function, namely that ['(z 4+ 1) = z[(z) for
z & Zi<o and the following:

2F1 (3, b e 1) = FE?E(;)F(? = Z; (Re(c) > Re(a -+ b)),
rz)r(l-z)= (z€C).

sin(mz)

These suffice to simplify the above expression for y (%)
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Thank you for the opportunity to speak today!

For more details, there is a draft on the arXiv with the same title as the
talk, although a more polished version will be forthcoming soon.
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