Collatz polynomials: an introduction with bounds on their zeros

Matt Hohertz
Department of Mathematics, Rutgers University

Experimental Mathematics Seminar

20 February 2020

Collatz conjecture

Collatz conjecture

Define

$$
C(N)= \begin{cases}\frac{3 N+1}{2} & , N \text { odd } \tag{1}\\ \frac{N}{2} & , N \text { even }\end{cases}
$$

Then, for all N, there exists n such that

$$
C^{n}(N)=1
$$

Collatz conjecture

Define

$$
C(N)= \begin{cases}\frac{3 N+1}{2} & , N \text { odd } \tag{1}\\ \frac{N}{2} & , N \text { even }\end{cases}
$$

Then, for all N, there exists n such that

$$
C^{n}(N)=1
$$

"Mathematics is not yet ready for such problems."

- Paul Erdős

Collatz polynomials: definition

Collatz polynomials: definition

Definition ($\mathrm{N}^{\text {th }}$ Collatz polynomial)

The polynomial

$$
P_{N}(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots+a_{n} z^{n}
$$

with coefficients

- $a_{0}=N$
- $a_{k}=C^{k}(N)$
- $a_{n}=1$
where n is the total stopping time of N, the least n such that $C^{n}(N)=1$.

Collatz polynomials: definition

Definition ($\mathrm{N}^{\text {th }}$ Collatz polynomial)

The polynomial

$$
P_{N}(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots+a_{n} z^{n}
$$

with coefficients

- $a_{0}=N$
- $a_{k}=C^{k}(N)$
- $a_{n}=1$
where n is the total stopping time of N, the least n such that $C^{n}(N)=1$. (Note that we are assuming Collatz to be true.)

Collatz polynomials: examples

Collatz polynomials: examples

Example

$$
P_{5}(z)=5+8 z+4 z^{2}+2 z^{3}+z^{4}
$$

Collatz polynomials: examples

Example

$$
\begin{gathered}
P_{5}(z)=5+8 z+4 z^{2}+2 z^{3}+z^{4} \\
P_{13}(z)=13+20 z+10 z^{2}+5 z^{3}+8 z^{4}+4 z^{5}+2 z^{6}+z^{7}
\end{gathered}
$$

Bounds on zeros

Bounds on zeros

In what follows, let ζ_{N} be a zero of $P_{N}(z)$.
Theorem

$$
\begin{equation*}
\frac{2 N}{3 N+1} \leq\left|\zeta_{N}\right| \leq 2 \tag{2}
\end{equation*}
$$

Bounds on zeros

Bounds on zeros

Upper bound.

Theorem (Borwein and Erdélyia)

a Corollary 1.2.3, "Polynomials and Polynomial Inequalities"
If $p(z)=a_{n} z^{n}+\ldots+a_{1} z+a_{0}$ for $a_{k}>0$ for all k, then all zeros of $p(z)$ lie in the annulus

$$
\begin{equation*}
\min _{0 \leq k \leq n-1} \frac{a_{k}}{a_{k+1}} \leq|z| \leq \max _{0 \leq k \leq n-1} \frac{a_{k}}{a_{k+1}} \tag{3}
\end{equation*}
$$

Bounds on zeros

Upper bound.

Theorem (Borwein and Erdélyia)

a Corollary 1.2.3, "Polynomials and Polynomial Inequalities"
If $p(z)=a_{n} z^{n}+\ldots+a_{1} z+a_{0}$ for $a_{k}>0$ for all k, then all zeros of $p(z)$ lie in the annulus

$$
\begin{equation*}
\min _{0 \leq k \leq n-1} \frac{a_{k}}{a_{k+1}} \leq|z| \leq \max _{0 \leq k \leq n-1} \frac{a_{k}}{a_{k+1}} \tag{3}
\end{equation*}
$$

By definition of C,

$$
\frac{a_{k}}{a_{k+1}}= \begin{cases}2, & a_{k} \text { even } \\ \frac{2 N}{3 N+1}, & a_{k} \text { odd }\end{cases}
$$

Other properties of zeros: real zeros

Other properties of zeros: real zeros

Theorem

For $N \geq 3, P_{N}(z)$ has at least one non-real zero.

Other properties of zeros: real zeros

Theorem

For $N \geq 3, P_{N}(z)$ has at least one non-real zero.

Proof (Part I).

Suppose all zeros are real, and label them in order:

$$
\begin{equation*}
-2 \leq r_{1} \leq r_{2} \leq \cdots \leq r_{n} \leq 0 \tag{4}
\end{equation*}
$$

where $r_{n} \leq 0$ by Descartes's Rule of Signs and $-2 \leq r_{1}$ because

$$
\begin{equation*}
-2=\sum_{i=1}^{n} r_{i}=-C^{n-1}(N) \tag{5}
\end{equation*}
$$

Other properties of zeros: real zeros

Other properties of zeros: real zeros

Proof (Part II).

Suppose - $1 \leq r_{1}$; then

$$
\begin{equation*}
1 \geq \prod_{i=1}^{N}\left|r_{i}\right|=N \geq 3 \tag{6}
\end{equation*}
$$

a contradiction. Thus $-2 \leq r_{1}<-1$, implying

$$
\begin{equation*}
-1<r_{2} \leq \cdots \leq r_{n}<0 \tag{7}
\end{equation*}
$$

Thus

$$
\begin{equation*}
1>\prod_{i=2}^{N}\left|r_{i}\right|=\frac{N}{\left|r_{1}\right|} \geq \frac{3}{2} \tag{8}
\end{equation*}
$$

a contradiction.

Other properties of zeros: rational/integer zeros

Other properties of zeros: rational/integer zeros

By the Rational Root Theorem and Descartes's Rule of Signs, $P_{N}(z)$ has rational root r only if

$$
\begin{equation*}
r=-2,-1 \tag{9}
\end{equation*}
$$

Other properties of zeros: rational/integer zeros

Other properties of zeros: rational/integer zeros

In what follows, let $m(N)$ be the number of odd integers in the trajectory of N.

Other properties of zeros: rational/integer zeros

In what follows, let $m(N)$ be the number of odd integers in the trajectory of N.

Lemma

If N_{i} is the $i^{\text {th }}$ odd number appearing in the Collatz trajectory of N, with each N_{i} appearing at the end of a subsequence

$$
2^{\ell_{i}-1} N_{i}, 2^{\ell_{i}-2} N_{i}, \ldots, N_{i}
$$

of length ℓ_{i}, then

$$
P_{N}(z)=\sum_{k=1}^{m(N)}\left(2^{\ell_{k}} N_{k}\right)\left(z^{\ell_{1}+\ldots+\ell_{k-1}}\right)\left(\frac{1-\left(\frac{z}{2}\right)^{\ell_{k}}}{2-z}\right)
$$

Other properties of zeros: rational/integer zeros

In what follows, let $m(N)$ be the number of odd integers in the trajectory of N.

Lemma

If N_{i} is the $i^{\text {th }}$ odd number appearing in the Collatz trajectory of N, with each N_{i} appearing at the end of a subsequence

$$
2^{\ell_{i}-1} N_{i}, 2^{\ell_{i}-2} N_{i}, \ldots, N_{i}
$$

of length ℓ_{i}, then

$$
P_{N}(z)=\sum_{k=1}^{m(N)}\left(2^{\ell_{k}} N_{k}\right)\left(z^{\ell_{1}+\ldots+\ell_{k-1}}\right)\left(\frac{1-\left(\frac{z}{2}\right)^{\ell_{k}}}{2-z}\right)
$$

Theorem

With notation as above, $P_{N}(-2)=0$ if and only if ℓ_{i} is even for all $i=1, \ldots, m$.

Other properties of zeros: rational/integer zeros

Other properties of zeros: rational/integer zeros

Proof.

One direction follows by direct substitution of -2 into the formula for $P_{N}(z)$.
For the other direction, note that the equality

$$
\begin{align*}
0=P_{N}(-2) & =\sum_{k=1}^{m}\left(2^{\ell_{k}} N_{k}\right)\left((-2)^{\ell_{1}+\ldots+\ell_{k-1}}\right)\left(\frac{1-(-1)^{\ell_{k}}}{4}\right) \tag{10}\\
& =\sum_{k: \ell_{k} \text { odd }} N_{k} \cdot(-2)^{\ell_{1}+\ldots+\ell_{k}-1} \tag{11}
\end{align*}
$$

is, if at least one ℓ_{k} is odd, equivalent to -2 being the root of a non-zero polynomial with only odd coefficients. This is impossible, contradiction.

Other properties of zeros: rational/integer zeros

Other properties of zeros: rational/integer zeros

Theorem
 If

$$
P_{N}(-1)=0
$$

then $m(N)$ is even.

Other properties of zeros: rational/integer zeros

$$
\begin{aligned}
& \text { Theorem } \\
& \text { If } \\
& \qquad P_{N}(-1)=0
\end{aligned}
$$

then $m(N)$ is even.

Proof.

If

$$
P_{N}(-1)=0
$$

then

$$
P_{N}(1)=0
$$

in $(\mathbb{Z} / 2 \mathbb{Z})$ [z], but this is true if and only if $P_{N}(z)$ has an even number of odd coefficients.

Other properties of zeros: rational/integer zeros

Other properties of zeros: rational/integer zeros

In what follows, let $c^{-1}(N)$ signify the odd preimage of N under the Collatz function.

Other properties of zeros: rational/integer zeros

In what follows, let $c^{-1}(N)$ signify the odd preimage of N under the Collatz function.

Theorem

If $N=c^{-1}\left(2^{t}\right)$, where t is the base of N, then $P_{N}(-1)=0$.

Other properties of zeros: rational/integer zeros

In what follows, let $c^{-1}(N)$ signify the odd preimage of N under the Collatz function.

Theorem

If $N=c^{-1}\left(2^{t}\right)$, where t is the base of N, then $P_{N}(-1)=0$.

Example

$P_{5}(-1)=P_{21}(-1)=0$

Other properties of zeros: rational/integer zeros

Other properties of zeros: rational/integer zeros

Proof.

$$
\begin{align*}
P_{N}(-1) & =\frac{2^{t+1}-1}{3}+2^{t+1} \cdot \sum_{k=1}^{t+1} 2^{-k}(-1)^{k} \tag{12}\\
& =\frac{2^{t+1}-1}{3}+2^{t+1} \cdot\left(-\frac{1}{2}\right) \cdot \frac{1-\left(-\frac{1}{2}\right)^{t+1}}{1-\left(-\frac{1}{2}\right)} \tag{13}\\
& =\frac{2^{t+1}-1}{3}-\frac{1}{3} \cdot 2^{t+1}\left(1-(-2)^{-t-1}\right) \tag{14}
\end{align*}
$$

Since the base of N is always odd if N is not a power of $2,(-2)^{-t-1}=2^{-t-1}$ and this expression simplifies to

$$
\begin{equation*}
=\frac{2^{t+1}-1}{3}-\frac{2^{t+1}-1}{3}=0 \tag{15}
\end{equation*}
$$

Other properties of zeros: rational/integer zeros

Other properties of zeros: rational/integer zeros

Unfortunately, a full converse of the theorem has proved elusive.

Other properties of zeros: rational/integer zeros

Unfortunately, a full converse of the theorem has proved elusive.

For example,

$$
P_{820569}(-1)=0
$$

yet $c(820569)=1230854=2 \cdot 615427$, which is not a power of two.

Other properties of zeros: rational/integer zeros

Unfortunately, a full converse of the theorem has proved elusive.

For example,

$$
P_{820569}(-1)=0
$$

yet $c(820569)=1230854=2 \cdot 615427$, which is not a power of two.

In fact, the following lemma implies that

$$
P_{N}(-1)=0
$$

for every odd preimage N of $2^{k} .615427$ where k is odd.

Other properties of zeros: rational/integer zeros

Other properties of zeros: rational/integer zeros

Lemma

If $P_{C^{-1}(N)}(-1)=0$ then $P_{C^{-1}(4 N)}(-1)=0$.

Other properties of zeros: rational/integer zeros

Lemma

If $P_{C^{-1}(N)}(-1)=0$ then $P_{C^{-1}(4 N)}(-1)=0$.

Proof.

If $P_{C^{-1}(N)}(-1)=0$ then $P_{N}(-1)=C^{-1}(N)=\frac{2 N-1}{3}$. But then

$$
\begin{align*}
P_{c^{-1}(4 N)} & =c^{-1}(4 N)-4 N+2 N-P_{N}(-1) \tag{16}\\
& =\frac{8 N-1}{3}-\frac{12 N}{3}+\frac{6 N}{3}-\frac{2 N-1}{3} \\
& =0
\end{align*}
$$

Other properties of zeros: rational/integer zeros

Other properties of zeros: rational/integer zeros

Finally, there exist N even such that $P_{N}(-1)=0$.

Other properties of zeros: rational/integer zeros

Finally, there exist N even such that $P_{N}(-1)=0$.

The least such example is

$$
\begin{equation*}
N=6094358=2 \cdot 83 \cdot 36713 \tag{19}
\end{equation*}
$$

Another example is

$$
\begin{equation*}
N=46507804=2^{2} \cdot 7 \cdot 593 \cdot 2801 \tag{20}
\end{equation*}
$$

Other properties of zeros: rational/integer zeros

Finally, there exist N even such that $P_{N}(-1)=0$.

The least such example is

$$
\begin{equation*}
N=6094358=2 \cdot 83 \cdot 36713 \tag{19}
\end{equation*}
$$

Another example is

$$
\begin{equation*}
N=46507804=2^{2} \cdot 7 \cdot 593 \cdot 2801 \tag{20}
\end{equation*}
$$

These two prime factorizations are apparently unrelated.

Paths forward

Paths forward

(1) Simple characterization of N such that $P_{N}(-1)=0$

Paths forward

(1) Simple characterization of N such that $P_{N}(-1)=0$
(2) Relationships between zeros of $P_{N}(z)$ and dynamics of $\left\{C^{k}(N)\right\}$

Paths forward

(1) Simple characterization of N such that $P_{N}(-1)=0$
(2) Relationships between zeros of $P_{N}(z)$ and dynamics of $\left\{C^{k}(N)\right\}$
(3) Applications of "factorization" of N based on linear factors of $P_{N}(z)$

