Collatz polynomials: an introduction with bounds on their zeros

Matt Hohertz

Department of Mathematics, Rutgers University

Experimental Mathematics Seminar

20 February 2020

Collatz conjecture

mh (Rutgers)

・ロト ・回ト ・ヨト

Collatz conjecture

Define

$$C(N) = egin{cases} rac{3N+1}{2} & , N ext{ odd} \ rac{N}{2} & , N ext{ even} \end{cases}$$

Then, for all N, there exists n such that

 $C^n(N) = 1$

mh (Rutgers)

(1)

Collatz conjecture

Define

$$C(N) = egin{cases} rac{3N+1}{2} & , N ext{ odd} \ rac{N}{2} & , N ext{ even} \end{cases}$$

Then, for all *N*, there exists *n* such that

$$C^n(N) = 1$$

"Mathematics is not yet ready for such problems." – Paul Erdős (1)

Collatz polynomials: definition

Image: A match a ma

Definition (*Nth* Collatz polynomial)

The polynomial

$$P_N(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n$$

with coefficients

- $a_0 = N$
- $a_k = C^k(N)$
- *a*_n = 1

where *n* is the *total stopping time* of *N*, the least *n* such that $C^{n}(N) = 1$.

Definition (*Nth* Collatz polynomial)

The polynomial

$$P_N(z) = a_0 + a_1 z + a_2 z^2 + \ldots + a_n z^n$$

with coefficients

- $a_0 = N$
- $a_k = C^k(N)$
- *a*_n = 1

where *n* is the *total stopping time* of *N*, the least *n* such that $C^n(N) = 1$. (Note that we are assuming Collatz to be true.)

Collatz polynomials: examples

Image: A math a math

Example

$$P_5(z) = 5 + 8z + 4z^2 + 2z^3 + z^4$$

Example

$$P_5(z) = 5 + 8z + 4z^2 + 2z^3 + z^4$$

$$P_{13}(z) = 13 + 20z + 10z^2 + 5z^3 + 8z^4 + 4z^5 + 2z^6 + z^7$$

• • • • • • • • • • •

mh (Rutgers)

Collatz polynomials: an introduction ...

ା≣ା ≣ ୬ର୍ Feb, 2020 5/18

In what follows, let ζ_N be a zero of $P_N(z)$.

Theorem		
	$\frac{2N}{3N+1} \leq \zeta_N \leq 2$	(2)

< 同 > < ∃ >

mh (Rutgers)

Collatz polynomials: an introduction ...

ା≣ା ≣ା ୬.୦.୦.୦ Feb, 2020 6/18

Upper bound.

Theorem (Borwein and Erdélyi^a)

^aCorollary 1.2.3, "Polynomials and Polynomial Inequalities"

If $p(z) = a_n z^n + ... + a_1 z + a_0$ for $a_k > 0$ for all k, then all zeros of p(z) lie in the annulus

$$\min_{0 \le k \le n-1} \frac{a_k}{a_{k+1}} \le |z| \le \max_{0 \le k \le n-1} \frac{a_k}{a_{k+1}}$$

(3)

Upper bound.

Theorem (Borwein and Erdélyi^a)

^aCorollary 1.2.3, "Polynomials and Polynomial Inequalities"

If $p(z) = a_n z^n + ... + a_1 z + a_0$ for $a_k > 0$ for all k, then all zeros of p(z) lie in the annulus

$$\min_{0 \le k \le n-1} \frac{a_k}{a_{k+1}} \le |z| \le \max_{0 \le k \le n-1} \frac{a_k}{a_{k+1}}$$

By definition of C,

$$rac{a_k}{a_{k+1}} = egin{cases} 2, & a_k ext{ even} \ rac{2N}{3N+1}, & a_k ext{ odd} \end{cases}$$

(3)

mh (Rutgers)

Collatz polynomials: an introduction ...

Feb, 2020 7/18

Image: A math a math

Theorem

For $N \ge 3$, $P_N(z)$ has at least one non-real zero.

< 47 ▶

Theorem

For $N \ge 3$, $P_N(z)$ has at least one non-real zero.

Proof (Part I).

Suppose all zeros are real, and label them in order:

$$-2 \le r_1 \le r_2 \le \dots \le r_n \le 0 \tag{4}$$

where $r_n \leq 0$ by Descartes's Rule of Signs and $-2 \leq r_1$ because

$$-2 = \sum_{i=1}^{n} r_i = -C^{n-1} (N)$$
 (5)

mh (Rutgers)

Collatz polynomials: an introduction ...

Feb, 2020 8/18

Image: A math a math

Proof (Part II).

Suppose $-1 \leq r_1$; then

$$1 \geq \prod_{i=1}^{N} |r_i| = N \geq 3$$

a contradiction. Thus $-2 \le r_1 < -1$, implying

$$-1 < r_2 \leq \cdots \leq r_n < 0 \tag{7}$$

Thus

$$1 > \prod_{i=2}^{N} |r_i| = \frac{N}{|r_1|} \ge \frac{3}{2}$$

a contradiction.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(6)

(8)

r

By the Rational Root Theorem and Descartes's Rule of Signs, $P_N(z)$ has rational root *r* only if

$$= -2, -1$$

(9)

Image: A math a math

In what follows, let m(N) be the number of odd integers in the trajectory of N.

4 A N

In what follows, let m(N) be the number of odd integers in the trajectory of N.

Lemma

If N_i is the *i*th odd number appearing in the Collatz trajectory of N, with each N_i appearing at the end of a subsequence

$$2^{\ell_i-1}N_i, 2^{\ell_i-2}N_i, ..., N_i$$

of length ℓ_i , then

$$P_{N}(z) = \sum_{k=1}^{m(N)} \left(2^{\ell_{k}} N_{k} \right) \left(z^{\ell_{1} + \dots + \ell_{k-1}} \right) \left(\frac{1 - \left(\frac{z}{2} \right)^{\ell_{k}}}{2 - z} \right)$$

In what follows, let m(N) be the number of odd integers in the trajectory of N.

Lemma

If N_i is the *i*th odd number appearing in the Collatz trajectory of N, with each N_i appearing at the end of a subsequence

$$2^{\ell_i-1}N_i, 2^{\ell_i-2}N_i, ..., N_i$$

of length ℓ_i , then

$$P_{N}(z) = \sum_{k=1}^{m(N)} \left(2^{\ell_{k}} N_{k} \right) \left(z^{\ell_{1} + \ldots + \ell_{k-1}} \right) \left(\frac{1 - \left(\frac{z}{2} \right)^{\ell_{k}}}{2 - z} \right)$$

Theorem

With notation as above, $P_N(-2) = 0$ if and only if ℓ_i is even for all i = 1, ..., m.

Proof.

One direction follows by direct substitution of -2 into the formula for $P_N(z)$.

For the other direction, note that the equality

$$0 = P_N(-2) = \sum_{k=1}^m \left(2^{\ell_k} N_k\right) \left((-2)^{\ell_1 + \dots + \ell_{k-1}}\right) \left(\frac{1 - (-1)^{\ell_k}}{4}\right)$$
(10)
= $\sum_{k: \ \ell_k \ \text{odd}} N_k \cdot (-2)^{\ell_1 + \dots + \ell_k - 1}$ (11)

is, if at least one ℓ_k is odd, equivalent to -2 being the root of a non-zero polynomial with only odd coefficients. This is impossible, contradiction.

Image: A math a math

Theorem

lf

$$P_N(-1)=0$$

then m(N) is even.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem

lf

$$P_N(-1)=0$$

then m(N) is even.

Proof.

lf

$$P_N(-1)=0$$

then

$$P_N(1)=0$$

in $(\mathbb{Z}/2\mathbb{Z})[z]$, but this is true if and only if $P_N(z)$ has an even number of odd coefficients.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Image: A math a math

In what follows, let $c^{-1}(N)$ signify the odd preimage of *N* under the Collatz function.

A D b 4 A b

In what follows, let $c^{-1}(N)$ signify the odd preimage of *N* under the Collatz function.

Theorem

If $N = c^{-1}(2^t)$, where *t* is the base of *N*, then $P_N(-1) = 0$.

In what follows, let $c^{-1}(N)$ signify the odd preimage of *N* under the Collatz function.

Theorem

If $N = c^{-1}(2^t)$, where *t* is the base of *N*, then $P_N(-1) = 0$.

Example

 $P_5(-1) = P_{21}(-1) = 0$

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proof.

$$P_{N}(-1) = \frac{2^{t+1} - 1}{3} + 2^{t+1} \cdot \sum_{k=1}^{t+1} 2^{-k} (-1)^{k}$$
(12)
$$= \frac{2^{t+1} - 1}{3} + 2^{t+1} \cdot \left(-\frac{1}{2}\right) \cdot \frac{1 - \left(-\frac{1}{2}\right)^{t+1}}{1 - \left(-\frac{1}{2}\right)}$$
(13)
$$= \frac{2^{t+1} - 1}{3} - \frac{1}{3} \cdot 2^{t+1} \left(1 - (-2)^{-t-1}\right)$$
(14)

Since the base of *N* is always odd if *N* is not a power of 2, $(-2)^{-t-1} = 2^{-t-1}$ and this expression simplifies to

$$=\frac{2^{t+1}-1}{3}-\frac{2^{t+1}-1}{3}=0$$
(15)

Image: A math a math

Unfortunately, a full converse of the theorem has proved elusive.

Unfortunately, a full converse of the theorem has proved elusive.

For example,

$$P_{820569}(-1) = 0$$

yet $c(820569) = 1230854 = 2 \cdot 615427$, which is not a power of two.

Unfortunately, a full converse of the theorem has proved elusive.

For example,

$$P_{820569}(-1) = 0$$

yet $c(820569) = 1230854 = 2 \cdot 615427$, which is not a power of two.

In fact, the following lemma implies that

$$P_N(-1)=0$$

for every odd preimage N of $2^k \cdot 615427$ where k is odd.

Image: A math a math

Lemma

If
$$P_{c^{-1}(N)}(-1) = 0$$
 then $P_{c^{-1}(4N)}(-1) = 0$.

Lemma

If
$$P_{c^{-1}(N)}(-1) = 0$$
 then $P_{c^{-1}(4N)}(-1) = 0$.

Proof.

If
$$P_{c^{-1}(N)}(-1) = 0$$
 then $P_N(-1) = c^{-1}(N) = \frac{2N-1}{3}$. But then

$$P_{c^{-1}(4N)} = c^{-1}(4N) - 4N + 2N - P_N(-1)$$
 (16)

$$=\frac{8N-1}{3}-\frac{12N}{3}+\frac{6N}{3}-\frac{2N-1}{3}$$
(17)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Image: A math a math

Finally, there exist *N* even such that $P_N(-1) = 0$.

4 A N

Finally, there exist *N* even such that $P_N(-1) = 0$.

The least such example is

$$N = 6094358 = 2 \cdot 83 \cdot 36713$$

Another example is

$$N = 46507804 = 2^2 \cdot 7 \cdot 593 \cdot 2801$$

(19)

(20)

Finally, there exist *N* even such that $P_N(-1) = 0$.

The least such example is

$$N = 6094358 = 2 \cdot 83 \cdot 36713$$

Another example is

$$N = 46507804 = 2^2 \cdot 7 \cdot 593 \cdot 2801$$

(20)

(19)

These two prime factorizations are apparently unrelated.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

mh (Rutgers)

Simple characterization of *N* such that $P_N(-1) = 0$

- Simple characterization of N such that $P_N(-1) = 0$
- 2 Relationships between zeros of $P_N(z)$ and dynamics of $\{C^k(N)\}$

- Simple characterization of N such that $P_N(-1) = 0$
- 2 Relationships between zeros of $P_N(z)$ and dynamics of $\{C^k(N)\}$
- O Applications of "factorization" of N based on linear factors of $P_N(z)$