Packing patterns in restricted permutations

Lara Pudwell
Valparaiso University
faculty.valpo.edu/lpudwell

Rutgers Experimental Math Seminar
March 5, 2020

Permutations

Definition

A permutation π of length n is an ordered list of the numbers $1,2, \ldots, n$. \mathcal{S}_{n} is the set of all permutations of length n.
π is often visualized by plotting the points $\left(i, \pi_{i}\right)$ in the Cartesian plane.

Permutation Constructions

Permutation Patterns

Definition

$\pi \in \mathcal{S}_{n}$ contains $\rho \in \mathcal{S}_{m}$ as a pattern if there exist $1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq n$ such that $\pi_{i_{a}}<\pi_{i_{b}}$ iff $\rho_{a}<\rho_{b}$. If π doesn't contain ρ, we say π avoids ρ and we write $\pi \in \mathcal{S}_{n}(\rho)$.

Example:

$$
\pi=2314 \in \mathcal{S}_{4}(321)
$$

Pattern Avoidance

$$
\text { Let } \mathrm{s}_{n}(\rho)=\left|\mathcal{S}_{n}(\rho)\right| \text {. }
$$

Theorem
For $n \geq 0, \mathrm{~s}_{n}(12)=\mathrm{s}_{n}(21)=1$.

$\mathcal{S}_{8}(12)$

$\mathcal{S}_{8}(21)$

Pattern Avoidance Symmetries

$$
\mathrm{s}_{n}(123)=\mathrm{s}_{n}(321)
$$

$$
\mathrm{s}_{n}(132)=\mathrm{s}_{n}(213)=\mathrm{s}_{n}(231)=\mathrm{s}_{n}(312)
$$

Pattern Avoidance

Theorem
If $\rho \in \mathcal{S}_{3}$, then $\mathrm{s}_{n}(\rho)=\frac{\left({ }^{2 n}\right)}{n+1}$.

Pattern Avoidance

Theorem
If $\rho \in \mathcal{S}_{3}$, then $\mathrm{s}_{n}(\rho)=\frac{\left({ }^{2 n} n\right)}{n+1}$.

A member of $\mathcal{S}_{8}(123)$

A member of $\mathcal{S}_{8}(132)$

Pattern Avoidance

Theorem
If $\rho \in \mathcal{S}_{3}$, then $\mathrm{s}_{n}(\rho)=\frac{\left({ }^{2 n} n\right)}{n+1}$.

A member of $\mathcal{S}_{8}(123)$

A member of $\mathcal{S}_{8}(132)$

Patterns

Definition

$\pi \in \mathcal{S}_{n}$ contains $\rho \in \mathcal{S}_{m}$ as a pattern if there exist $1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq n$ such that $\pi_{i_{a}}<\pi_{i_{b}}$ iff $\rho_{a}<\rho_{b}$.

Example:

$\pi=2314$ contains...
1 copy of 123
2 copies of 213
1 copy of 231

Pattern Packing

- $\nu(\rho, \pi)$ is the number of occurrences of ρ in π.
- Given n and ρ, consider $\max _{\pi \in \mathcal{S}_{n}} \nu(\rho, \pi)$ Example: $n=3$ and $\rho=12$

Pattern Packing

- $\nu(\rho, \pi)$ is the number of occurrences of ρ in π.
- Given n and ρ, consider $\max _{\pi \in \mathcal{S}_{n}} \nu(\rho, \pi)$ Example: $n=3$ and $\rho=12$

$$
\begin{gathered}
\nu(12,231)=1 \quad \nu(12,312)=1 \quad \nu(12,321)=0 \\
\max _{\pi \in \mathcal{S}_{3}} \nu(12, \pi)=3
\end{gathered}
$$

- $d(\rho)=\lim _{n \rightarrow \infty} \frac{\max _{\pi \in \mathcal{S}_{n}} \nu(\rho, \pi)}{\binom{n}{|\rho|}}$ (packing density)

Pattern Packing

- $\nu(\rho, \pi)$ is the number of occurrences of ρ in π.
- $d(\rho)=\lim _{n \rightarrow \infty} \frac{\max _{\pi \in \mathcal{S}_{n}} \nu(\rho, \pi)}{\binom{n}{|\rho|}}$ (packing density)

Pattern Packing

- $\nu(\rho, \pi)$ is the number of occurrences of ρ in π.
- $d(\rho)=\lim _{n \rightarrow \infty} \frac{\max _{\pi \in \mathcal{S}_{n}} \nu(\rho, \pi)}{\binom{n}{|\rho|}}$ (packing density)

Known:

- $d(12 \cdots m)=1 \quad($ Pack $12 \cdots m$ into $12 \cdots n$.)

Pattern Packing

- $\nu(\rho, \pi)$ is the number of occurrences of ρ in π.
- $d(\rho)=\lim _{n \rightarrow \infty} \frac{\max _{\pi \in \mathcal{S}_{n}} \nu(\rho, \pi)}{\binom{n}{|\rho|}}$ (packing density)

Known:

- $d(12 \cdots m)=1 \quad$ (Pack $12 \cdots m$ into $12 \cdots$ n.)
- For all $\rho \in \mathcal{S}_{m}, d(\rho)$ exists.

Pattern Packing

- $\nu(\rho, \pi)$ is the number of occurrences of ρ in π.
- $d(\rho)=\lim _{n \rightarrow \infty} \frac{\max _{\pi \in \mathcal{S}_{n}} \nu(\rho, \pi)}{\binom{n}{|\rho|}}$ (packing density)

Known:

- $d(12 \cdots m)=1 \quad$ (Pack $12 \cdots m$ into $12 \cdots n$.)
- For all $\rho \in \mathcal{S}_{m}, d(\rho)$ exists.
- If ρ is layered, then $\max _{\pi \in \mathcal{S}_{n}} \nu(\rho, \pi)$ is achieved by a layered π.

Packing 132

Known: Since 132 is layered, then $\max _{\pi \in \mathcal{S}_{n}} \nu(132, \pi)$ is achieved by a layered π.

$$
\pi=\alpha \bigoplus J_{i}
$$

$$
\nu(132, \pi)=\nu(132, \alpha)+(n-i) \cdot\binom{i}{2}
$$

Packing 132

Known: Since 132 is layered, then $\max _{\pi \in \mathcal{S}_{n}} \nu(132, \pi)$ is achieved by a layered π.

- $\frac{\nu(132, \pi)}{\binom{n}{3}}$ is maximized when $i=\left(\frac{3}{2}-\frac{\sqrt{3}}{2}\right) n \approx 0.634 n$
- Implies $d(132)=2 \sqrt{3}-3 \approx 0.464$

Pattern Packing

- $\nu(\rho, \pi)$ is the number of occurrences of ρ in π.
- $d(\rho)=\lim _{n \rightarrow \infty} \frac{\max _{\pi \in \mathcal{S}_{n}} \nu(\rho, \pi)}{\binom{n}{|\rho|}}$ (packing density)

Known:

- $d(12 \cdots m)=1 \quad$ (Pack $12 \cdots m$ into $12 \cdots n$.)
- For all $\rho \in \mathcal{S}_{m}, d(\rho)$ exists.
- If ρ is layered, then $\max _{\pi \in \mathcal{S}_{n}} \nu(\rho, \pi)$ is achieved by a layered π.
- $d(132)=2 \sqrt{3}-3 \approx 0.464$

Notation

- $\nu(\rho, \pi)$ is the number of occurrences of ρ in π.

Previous work:

$$
d(\rho)=\lim _{n \rightarrow \infty} \frac{\max _{\pi \in \mathcal{S}_{n}} \nu(\rho, \pi)}{\binom{n}{|\rho|}}
$$

Notation

- $\nu(\rho, \pi)$ is the number of occurrences of ρ in π.

Previous work:

$$
d(\rho)=\lim _{n \rightarrow \infty} \frac{\max _{\pi \in \mathcal{S}_{n}} \nu(\rho, \pi)}{\binom{n}{|\rho|}}
$$

In this talk:

$$
d_{\sigma}(\rho)=\lim _{n \rightarrow \infty} \frac{\max _{\pi \in \mathcal{S}_{n}(\sigma)} \nu(\rho, \pi)}{\binom{n}{|\rho|}} \quad d_{A}(\rho)=\lim _{n \rightarrow \infty} \frac{\max _{\pi \in A_{n}} \nu(\rho, \pi)}{\binom{n}{|\rho|}}
$$

A_{n} is the set of alternating permutations,
i.e. those that avoid consecutive 123 patterns and consecutive 321 patterns.

Packing patterns of length 3

Recall: $d_{\sigma}(\rho)=\lim _{n \rightarrow \infty} \frac{\max _{\pi \in \mathcal{S}_{n}(\sigma)} \nu(\rho, \pi)}{\binom{n \mid n}{|\rho|}}$

$\rho \backslash \sigma$	123	132	213	231	312	321	-
123							1
132							$2 \sqrt{3}-3$

Packing patterns of length 3

Recall: $d_{\sigma}(\rho)=\lim _{n \rightarrow \infty} \frac{\max _{\pi \in \mathcal{S}_{n}(\sigma)} \nu(\rho, \pi)}{\binom{n \mid n}{|\rho|}}$

$\rho \backslash \sigma$	123	132	213	231	312	321	-
123	0						1
132		0					$2 \sqrt{3}-3$

Packing patterns of length 3

Recall: $d_{\sigma}(\rho)=\lim _{n \rightarrow \infty} \frac{\max _{\pi \in \mathcal{S}_{n}(\sigma)} \nu(\rho, \pi)}{\binom{n}{|\rho|}}$

$\rho \backslash \sigma$	123	132	213	231	312	321	-
123	0	1	1	1	1	1	1
132		0					$2 \sqrt{3}-3$

- $I_{n}=12 \cdots n$ avoids $\sigma \in \mathcal{S}_{3} \backslash\{123\}$.

Packing patterns of length 3

Recall: $d_{\sigma}(\rho)=\lim _{n \rightarrow \infty} \frac{\max _{\pi \in \mathcal{S}_{n}(\sigma)} \nu(\rho, \pi)}{\binom{n}{|\rho|}}$

$\rho \backslash \sigma$	123	132	213	231	312	321	-
123	0	1	1	1	1	1	1
132		0		$2 \sqrt{3}-3$	$2 \sqrt{3}-3$		$2 \sqrt{3}-3$

- $I_{n}=12 \cdots n$ avoids $\sigma \in \mathcal{S}_{3} \backslash\{123\}$.
- Layered permutations avoid 231 and 312 .

Packing patterns of length 3

Recall: $d_{\sigma}(\rho)=\lim _{n \rightarrow \infty} \frac{\max _{\pi \in \mathcal{S}_{n}(\sigma)} \nu(\rho, \pi)}{\binom{n}{|\rho|}}$

$\rho \backslash \sigma$	123	132	213	231	312	321	-
123	0	1	1	1	1	1	1
132	$?$	0	$?$	$2 \sqrt{3}-3$	$2 \sqrt{3}-3$	$?$	$2 \sqrt{3}-3$

- $I_{n}=12 \cdots n$ avoids $\sigma \in \mathcal{S}_{3} \backslash\{123\}$.
- Layered permutations avoid 231 and 312.
- New: $d_{123}(132), d_{213}(132)$, and $d_{321}(132)$

Packing 132 ...and avoiding 123

Packing 132
 ...and avoiding 123

Packing 132
 ...and avoiding 123

- $J_{i} \oplus J_{n-i}$ has $i\binom{n-i}{2}$ copies of 132. $\left(J_{n}=n \cdots 21\right)$

Packing 132
 ...and avoiding 123

- $J_{i} \oplus J_{n-i}$ has $i\binom{n-i}{2}$ copies of 132. $\left(J_{n}=n \cdots 21\right)$
- Maximized when $i=\left\lfloor\frac{n}{3}\right\rfloor$.

Packing 132
 ...and avoiding 123

- $J_{i} \oplus J_{n-i}$ has $i\binom{n-i}{2}$ copies of 132. $\left(J_{n}=n \cdots 21\right)$
- Maximized when $i=\left\lfloor\frac{n}{3}\right\rfloor$.
- Implies $d_{123}(132)=\frac{4}{9}$.

Packing 132

...and avoiding 123
...and avoiding 213

- $J_{i} \oplus J_{n-i}$ has $i\binom{n-i}{2}$ copies of 132. $\left(J_{n}=n \cdots 21\right)$
- Maximized when $i=\left\lfloor\frac{n}{3}\right\rfloor$.
- Implies $d_{123}(132)=\frac{4}{9}$.

Packing 132

...and avoiding 123

...and avoiding 213

- $J_{i} \oplus J_{n-i}$ has $i\binom{n-i}{2}$ copies of 132. $\left(J_{n}=n \cdots 21\right)$
- Maximized when $i=\left\lfloor\frac{n}{3}\right\rfloor$.
- Implies $d_{123}(132)=\frac{4}{9}$.
- $I_{i} \oplus J_{n-i}$ has $i\binom{n-i}{2}$ copies of 132.
- Maximized when $i=\left\lfloor\frac{n}{3}\right\rfloor$.
- Implies $d_{213}(132)=\frac{4}{9}$.

Packing 132 and Avoiding 321

- $I_{a} \oplus\left(I_{b} \ominus I_{c}\right)$ has $a \cdot b \cdot c$ copies of 132 .

Packing 132 and Avoiding 321

- $I_{a} \oplus\left(I_{b} \ominus I_{c}\right)$ has $a \cdot b \cdot c$ copies of 132 .
- Replace initial l_{a} with a 132-optimizer of length a to get more copies.

Packing 132 and Avoiding 321

- $I_{a} \oplus\left(I_{b} \ominus I_{c}\right)$ has $a \cdot b \cdot c$ copies of 132 .
- Replace initial l_{a} with a 132-optimizer of length a to get more copies.
- Optimized when $a=\left(\frac{\sqrt{3}}{2}-\frac{1}{2}\right) n, b=c=\left(\frac{3}{4}-\frac{\sqrt{3}}{4}\right) n$.
- Implies $d_{321}(132)=\sqrt{3}-\frac{3}{2}$.

Recap:

$$
d_{\sigma}(\rho)=\lim _{n \rightarrow \infty} \frac{\max _{\pi \in \mathcal{S}_{n}(\sigma)} \nu(\rho, \pi)}{\binom{n}{|\rho|}}
$$

$\rho \backslash \sigma$	123	132	213	231	312	321	-
123	0	1	1	1	1	1	1
132	$\frac{4}{9}$	0	$\frac{4}{9}$	$2 \sqrt{3}-3$	$2 \sqrt{3}-3$	$\sqrt{3}-\frac{3}{2}$	$2 \sqrt{3}-3$

Recap:

$$
d_{\sigma}(\rho)=\lim _{n \rightarrow \infty} \frac{\max _{\pi \in \mathcal{S}_{n}(\sigma)} \nu(\rho, \pi)}{\binom{n}{|\rho|}}
$$

$\rho \backslash \sigma$	123	132	213	231	312	321	-
123	0	1	1	1	1	1	1
132	$\frac{4}{9}$	0	$\frac{4}{9}$	$2 \sqrt{3}-3$	$2 \sqrt{3}-3$	$\sqrt{3}-\frac{3}{2}$	$2 \sqrt{3}-3$

Or approximately...

$\rho \backslash \sigma$	123	132	213	231	312	321	-
123	0	1	1	1	1	1	1
132	0.444	0	0.444	0.464	0.464	0.232	0.464

Packing patterns of length 4

Recall: $d_{\sigma}(\rho)=\lim _{n \rightarrow \infty} \frac{\max _{\pi \in \mathcal{S}_{n}(\sigma)} \nu(\rho, \pi)}{\left(\begin{array}{l}n|n|\end{array}\right)}$

$\rho \backslash \sigma$	123	132	213	231	312	321	-
1234							1
1432							α
2143							$\frac{3}{8}$
1243							$\frac{3}{8}$
1324							≈ 0.244
1342							≈ 0.19658
2413							≈ 0.10474

α is the real root of $x^{3}-12 x^{2}+156 x-64(\approx 0.42357)$

Packing patterns of length 4

Recall: $d_{\sigma}(\rho)=\lim _{n \rightarrow \infty} \frac{\max _{\pi \in \mathcal{S}_{n}(\sigma)} \nu(\rho, \pi)}{\binom{n}{|\rho|}}$

$\rho \backslash \sigma$	123	132	213	231	312	321	-
1234	0						1
1432		0				0	α
2143		0	0				$\frac{3}{8}$
1243	0	0					$\frac{3}{8}$
1324	0	0	0				≈ 0.244
1342	0	0		0			≈ 0.19658
2413		0	0	0	0		≈ 0.10474

α is the real root of $x^{3}-12 x^{2}+156 x-64(\approx 0.42357)$

Packing patterns of length 4

Recall: $d_{\sigma}(\rho)=\lim _{n \rightarrow \infty} \frac{\max _{\pi \in \mathcal{S}_{n}(\sigma)} \nu(\rho, \pi)}{\binom{n \mid n}{|\rho|}}$

$\rho \backslash \sigma$	123	132	213	231	312	321	-
1234	0	1	1	1	1	1	1
1432		0				0	α
2143		0	0				$\frac{3}{8}$
1243	0	0					$\frac{3}{8}$
1324	0	0	0				≈ 0.244
1342	0	0		0			≈ 0.19658
2413		0	0	0	0		≈ 0.10474

α is the real root of $x^{3}-12 x^{2}+156 x-64(\approx 0.42357)$

Packing patterns of length 4

Recall: $d_{\sigma}(\rho)=\lim _{n \rightarrow \infty} \frac{\max _{\pi \in \mathcal{S}_{n}(\sigma)} \nu(\rho, \pi)}{\binom{n}{|\rho|}}$

$\rho \backslash \sigma$	123	132	213	231	312	321	-
1234	0	1	1	1	1	1	1
1432		0		α	α	0	α
2143		0	0	$\frac{3}{8}$	$\frac{3}{8}$		$\frac{3}{8}$
1243	0	0		$\frac{3}{8}$	$\frac{3}{8}$		$\frac{3}{8}$
1324	0	0	0	β	β		$\approx 0.244(\beta)$
1342	0	0		0			≈ 0.19658
2413		0	0	0	0		≈ 0.10474

α is the real root of $x^{3}-12 x^{2}+156 x-64(\approx 0.42357)$

Packing patterns of length 4

Recall: $d_{\sigma}(\rho)=\lim _{n \rightarrow \infty} \frac{\max _{\pi \in \mathcal{S}_{n}(\sigma)} \nu(\rho, \pi)}{\binom{n}{|\rho|}}$

$\rho \backslash \sigma$	123	132	213	231	312	321	-
1234	0	1	1	1	1	1	1
1432		0		α	α	0	α
2143	$\frac{3}{8}$	0	0	$\frac{3}{8}$	$\frac{3}{8}$		$\frac{3}{8}$
1243	0	0	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{3}{8}$		$\frac{3}{8}$
1324	0	0	0	β	β		$\approx 0.244(\beta)$
1342	0	0		0			≈ 0.19658
2413		0	0	0	0		≈ 0.10474

α is the real root of $x^{3}-12 x^{2}+156 x-64(\approx 0.42357)$

Packing patterns of length 4

Recall: $d_{\sigma}(\rho)=\lim _{n \rightarrow \infty} \frac{\max _{\pi \in \mathcal{S}_{n}(\sigma)} \nu(\rho, \pi)}{\binom{n}{|\rho|}}$

$\rho \backslash \sigma$	123	132	213	231	312	321	-
1234	0	1	1	1	1	1	1
1432		0		α	α	0	α
2143	$\frac{3}{8}$	0	0	$\frac{3}{8}$	$\frac{3}{8}$		$\frac{3}{8}$
1243	0	0	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{3}{8}$		$\frac{3}{8}$
1324	0	0	0	β	β		$\approx 0.244(\beta)$
1342	0	0		0			≈ 0.19658
2413		0	0	0	0		≈ 0.10474

α is the real root of $x^{3}-12 x^{2}+156 x-64(\approx 0.42357)$

Packing patterns of length 4

Recall: $d_{\sigma}(\rho)=\lim _{n \rightarrow \infty} \frac{\max _{\pi \in \mathcal{S}_{n}(\sigma)} \nu(\rho, \pi)}{\binom{n}{(\rho \mid)}}$

$\rho \backslash \sigma$	123	132	213	231	312	321	-
1234	0	1	1	1	1	1	1
1432	$\frac{27}{64}$	0	$\frac{27}{64}$	α	α	0	α
2143	$\frac{3}{8}$	0	0	$\frac{3}{8}$	$\frac{3}{8}$	$\geq \frac{3}{32}$	$\frac{3}{8}$
1243	0	0	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\geq \frac{3}{16}$	$\frac{3}{8}$
1324	0	0	0	β	β	$\geq \gamma$	$\approx 0.244(\beta)$
1342	0	0	$\geq \frac{3}{16}$	0	$\geq \frac{3}{16}$	$\geq \delta$	≈ 0.19658
2413	$\geq \frac{3}{32}$	0	0	0	0	$\geq \frac{3}{32}$	≈ 0.10474

α is the real root of $x^{3}-12 x^{2}+156 x-64(\approx 0.42357)$

$$
\begin{gathered}
\frac{3}{16}=0.1875, \frac{3}{32}=0.09375, \frac{27}{64}=0.421875 \\
\gamma \approx 0.09450, \delta \approx 0.18825
\end{gathered}
$$

Joint Distributions

123 vs. 132

123 vs. 231

123 vs. 321

132 vs. 213

132 vs. 231

More Joint Distributions

123, 312, 321

132, 213, 321

213, 231, 321

132, 213, 231

231, 312, 321

Alternating Permutations

A_{n} is the set of permutations of length n avoiding 123 and 321 consecutively.

$$
\begin{array}{lllll}
1324 & 1423 & 2314 & 2413 & 3412 \\
4231 & 4132 & 3241 & 3142 & 2143
\end{array}
$$

Goal: Find $d_{A}(\rho)=\lim _{n \rightarrow \infty} \frac{\max _{\pi \in A_{n}} \nu(\rho, \pi)}{\binom{n}{|\rho|}}$

Alternating packing densities

- $1 \oplus 21 \oplus \cdots \oplus 21(\oplus 1)$
- Implies $d_{A}(123)=1$.
- Use same ratios for "alternating layers" as 132-optimizer in \mathcal{S}_{n}.
- Implies $d_{A}(132)=2 \sqrt{3}-3$.

In fact...

Proposition

$$
\text { For all } \rho \in \mathcal{S}_{k}, d(\rho)=d_{A}(\rho) \text {. }
$$

Fix τ_{n} such that $\lim _{n \rightarrow \infty} \frac{\nu\left(\rho, \tau_{n}\right)}{\binom{n}{k}}=d(\rho)$ and let $m \geq 1$.
Let σ_{n} be obtained by inflating each point of τ_{n} with an alternating permutation of length m or $m+1$.

In fact...

Proposition

$$
\text { For all } \rho \in \mathcal{S}_{k}, d(\rho)=d_{A}(\rho) \text {. }
$$

Fix τ_{n} such that $\lim _{n \rightarrow \infty} \frac{\nu\left(\rho, \tau_{n}\right)}{\binom{n}{k}}=d(\rho)$ and let $m \geq 1$.
Let σ_{n} be obtained by inflating each point of τ_{n} with an alternating permutation of length m or $m+1$.

$$
\nu\left(\rho, \tau_{n}\right) \cdot m^{k} \leq \nu\left(\rho, \sigma_{n}\right)
$$

In fact...

Proposition

$$
\text { For all } \rho \in \mathcal{S}_{k}, d(\rho)=d_{A}(\rho) .
$$

Fix τ_{n} such that $\lim _{n \rightarrow \infty} \frac{\nu\left(\rho, \tau_{n}\right)}{\binom{n}{k}}=d(\rho)$ and let $m \geq 1$.
Let σ_{n} be obtained by inflating each point of τ_{n} with an alternating permutation of length m or $m+1$.

$$
\lim _{n \rightarrow \infty} \frac{\nu\left(\rho, \tau_{n}\right) \cdot m^{k}}{\binom{n}{k}} \leq \lim _{n \rightarrow \infty} \frac{\nu\left(\rho, \sigma_{n}\right)}{\binom{n}{k}}
$$

In fact...

Proposition

$$
\text { For all } \rho \in \mathcal{S}_{k}, d(\rho)=d_{A}(\rho) .
$$

Fix τ_{n} such that $\lim _{n \rightarrow \infty} \frac{\nu\left(\rho, \tau_{n}\right)}{\binom{n}{k}}=d(\rho)$ and let $m \geq 1$.
Let σ_{n} be obtained by inflating each point of τ_{n} with an alternating permutation of length m or $m+1$.

$$
\lim _{n \rightarrow \infty} \frac{\nu\left(\rho, \tau_{n}\right) \cdot m^{k}}{\binom{n}{k}} \leq \lim _{n \rightarrow \infty} \frac{\nu\left(\rho, \sigma_{n}\right)\binom{m n}{k}}{\binom{n}{k}\binom{m n}{k}}
$$

In fact...

Proposition

$$
\text { For all } \rho \in \mathcal{S}_{k}, d(\rho)=d_{A}(\rho) .
$$

Fix τ_{n} such that $\lim _{n \rightarrow \infty} \frac{\nu\left(\rho, \tau_{n}\right)}{\binom{n}{k}}=d(\rho)$ and let $m \geq 1$.
Let σ_{n} be obtained by inflating each point of τ_{n} with an alternating permutation of length m or $m+1$.

$$
\lim _{n \rightarrow \infty} \frac{\nu\left(\rho, \tau_{n}\right) \cdot m^{k}\binom{n}{k}}{\binom{n}{k}\binom{m n}{k}} \leq \lim _{n \rightarrow \infty} \frac{\nu\left(\rho, \sigma_{n}\right)}{\binom{m n}{k}}
$$

In fact...

Proposition

$$
\text { For all } \rho \in \mathcal{S}_{k}, d(\rho)=d_{A}(\rho) \text {. }
$$

Fix τ_{n} such that $\lim _{n \rightarrow \infty} \frac{\nu\left(\rho, \tau_{n}\right)}{\binom{n}{k}}=d(\rho)$ and let $m \geq 1$.
Let σ_{n} be obtained by inflating each point of τ_{n} with an alternating permutation of length m or $m+1$.

$$
\lim _{n \rightarrow \infty} \frac{d(\rho) \cdot m^{k}\binom{n}{k}}{\binom{m n}{k}} \leq \lim _{n \rightarrow \infty} \frac{\nu\left(\rho, \sigma_{n}\right)}{\binom{m n}{k}}
$$

In fact...

Proposition

$$
\text { For all } \rho \in \mathcal{S}_{k}, d(\rho)=d_{A}(\rho) \text {. }
$$

Fix τ_{n} such that $\lim _{n \rightarrow \infty} \frac{\nu\left(\rho, \tau_{n}\right)}{\binom{n}{k}}=d(\rho)$ and let $m \geq 1$.
Let σ_{n} be obtained by inflating each point of τ_{n} with an alternating permutation of length m or $m+1$.

$$
d(\rho) \leq \lim _{n \rightarrow \infty} \frac{\nu\left(\rho, \sigma_{n}\right)}{\binom{m n}{k}}
$$

In fact...

Proposition

$$
\text { For all } \rho \in \mathcal{S}_{k}, d(\rho)=d_{A}(\rho) \text {. }
$$

Fix τ_{n} such that $\lim _{n \rightarrow \infty} \frac{\nu\left(\rho, \tau_{n}\right)}{\binom{n}{k}}=d(\rho)$ and let $m \geq 1$.
Let σ_{n} be obtained by inflating each point of τ_{n} with an alternating permutation of length m or $m+1$.

$$
d(\rho) \leq \lim _{n \rightarrow \infty} \frac{\nu\left(\rho, \sigma_{n}\right)}{\binom{m n}{k}} \leq d(\rho)
$$

Packing 123

- $1 \oplus 21 \oplus \cdots \oplus 21(\oplus 1)$
- Implies $d_{A}(123)=1$.
- $\binom{n}{3}$ subsequences of length 3 .
- $\approx c \cdot\binom{n}{2}$ are not 123 patterns.

Counting Sequences

Let $a_{123}(n)$ be the number of copies of 123 in $1 \oplus 21 \oplus \cdots \oplus 21(\oplus 1)$.

Counting Sequences

Let $a_{123}(n)$ be the number of copies of 123 in $1 \oplus 21 \oplus \cdots \oplus 21(\oplus 1)$.

$$
a_{123}(n)=\left\{\begin{array}{ll}
2\left(\frac{n}{2}-1\right)+8\left(\frac{n-1}{2}-1\right. \\
4\binom{\frac{n-1}{2}}{2}+8\left(\frac{n-1}{2}\right) & n \text { even } \\
3
\end{array}\right) \quad n \text { odd }
$$

$2,4,12,20,38,56,88,120,170,220,292,364,462,560,688,816,978, \ldots$

Counting Sequences

Let $a_{123}(n)$ be the number of copies of 123 in $1 \oplus 21 \oplus \cdots \oplus 21(\oplus 1)$.

```
\[
a_{123}(n)=\left\{\begin{array}{ll}
2\left(\frac{n}{2}-1\right)+8\left(\frac{n}{2}-1\right. \\
4\binom{\frac{n-1}{2}}{2}+8\left(\frac{n-1}{2}\right) & n \text { even } \\
3
\end{array}\right) \quad n \text { odd }
\]
\(2,4,12,20,38,56,88,120,170,220,292,364,462,560,688,816,978, \ldots\)
A099956 Atomic numbers of the alkaline earth metals.
4, 12, 20, 38, 56, 88 (list; graph; refs; listen; history; text; internal format)
\[
\text { OFFSET } \quad 1,1
\]
LINkS Table of \(n\), \(a(n)\) for \(n=1 . .6\).
EXAMPLE \(\quad 12\) is the atomic number of magnesium.
CROSSREFS Cf. A099955, alkali metals; A101648, metalloids; A101647, nonmetals (except halogens and noble gases); A097478, halogens; A018227, noble gases; A101649, poor metals.
Sequence in context: A057317 A008068 A008183 * A301066 A008092 A316299
Adjacent sequences: A099953 A099954 A099955 * A099957 A099958 A099959
KEYWORD nonn, fini, full
AUTHOR Parthasarathy Nambi, Nov 122004
status
approved
```


Counting Sequences

Let $a_{123}(n)$ be the number of copies of 123 in $1 \oplus 21 \oplus \cdots \oplus 21(\oplus 1)$.

```
\[
a_{123}(n)=\left\{\begin{array}{ll}
2\left(\frac{n}{2}-1\right)+8\left(\frac{n}{2}-1\right. \\
4\binom{\frac{n-1}{2}}{2}+8\binom{\frac{n-1}{2}}{3} & n \text { even } \\
3
\end{array}\right)
\]
\[
2,4,12,20,38,56,88,120,170,220,292,364,462,560,688,816,978, \ldots
\]
```

A168380 Row sums of A168281.

```
\(2,4,12,20,38,56,88,120,170,220,292,364,462,560,688,816,978,1140\), 1340, 1540, 1782, 2024, 2312, 2600, 2938, 3276, 3668, 4060, 4510, 4960, 5472, 5984, 6562, 7140, \(7788,8436,9158,9880,10680,11480,12362,13244,14212,15180,16238,17296,18448,19600\), 20850, 22100 (list; graph; refs; listen; history; text; internal format)
\[
\begin{array}{ll}
\text { OFFSET } & 1,1
\end{array}
\]
COMMENTS The atomic numbers of the augmented alkaline earth group in Charles Janet's spiral periodic table are 0 and the first eight terms of this sequence (see Stewart reference). - Alonso del Arte, May 132011
LINXS Vincenzo Librandi, Table of \(n\), \(a(n)\) for \(n=1 . .10000\)
Stewart, Philip, Charles Janet: unrecognized genius of the Periodic System. Foundations of Chemistry (2010), p. 9.
Index entries for linear recurrences with constant coefficients, signature ( \(2,1,-4,1,2,-1\) ).
FORMULA \(\quad a(n)=2 * 0005993(n-1)\).
\(a(n)=(n+1)^{*}\left(3+2^{*} n^{\wedge} 2+4^{*} n-3^{*}(-1)^{\wedge} n\right) / 12\).
\(a(n+1)-a(n)=4093907(n)=\underline{137583}(n+1)\).
\(a(2 n+1)=A 035597(n+1) \quad a(2 n)=0002492(n)\).
```


Alkaline Earth Metals (Group 2)

$\underset{\text { Preiod }}{\substack{\text { Group }}}$	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1																	2 He
23 3 1 1	$\begin{gathered} 4 \\ \mathrm{Be} \end{gathered}$											5	${ }_{6}^{6}$	7 N	8	9	10 Ne
$3 \begin{aligned} & 11 \\ & \mathrm{Na} \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 12 \\ \mathrm{Mg} \\ \hline \end{array}$											13 Al 1	14 Si	15 P	16	17 $C 1$	18 Ar
419	$\begin{array}{\|l\|} \hline 20 \\ \mathrm{Ca} \\ \hline \end{array}$	21 SC	$\frac{22}{1 i}$	23	24 Cr	$\begin{array}{\|l\|} \hline 25 \\ \mathrm{Mn} \\ \hline \end{array}$	$\begin{aligned} & 26 \\ & \mathrm{Fe} \end{aligned}$	$\begin{array}{\|l\|} \hline 27 \\ \mathrm{CO} \\ \hline \end{array}$	$\begin{aligned} & 28 \\ & \mathrm{Ni} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 29 \\ \mathrm{Cu} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 30 \\ \mathrm{Zn} \\ \hline \end{array}$	$\begin{array}{l\|} \hline 31 \\ \mathrm{Ga} \\ \hline \end{array}$	$\begin{aligned} & 32 \\ & \mathrm{Ge} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 33 \\ & \text { As } \\ & \hline \end{aligned}$	34 Se	35 Br	36 Kr
537 	$\begin{aligned} & \hline 38 \\ & \mathrm{Sr} \\ & \hline \end{aligned}$	39 Y	40	$\begin{aligned} & \hline 41 \\ & \mathrm{Nb} \\ & \hline \end{aligned}$	42	$\begin{aligned} & \hline 43 \\ & \mathrm{Tc} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 44 \\ & \mathrm{Ru} \\ & \hline \end{aligned}$	45 Rh	$\begin{aligned} & 46 \\ & \mathrm{Pd} \end{aligned}$	$\begin{aligned} & 47 \\ & \mathrm{Ag} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 48 \\ & \mathrm{Cd} \\ & \hline \end{aligned}$	49 In 	50 50	51 Sb	52	53 I	54 Xe
655 Cs	$\begin{aligned} & 56 \\ & \mathrm{Ba} \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 57 \\ \text { La } \\ \hline \end{array}$	$\star \begin{aligned} & 72 \\ & \mathrm{Hf} \end{aligned}$	$\begin{aligned} & 73 \\ & \mathrm{Ta} \end{aligned}$	$\begin{aligned} & \hline 74 \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & 75 \\ & \mathrm{Re} \\ & \hline \end{aligned}$	76 Os	$\begin{gathered} \hline 77 \\ \mathrm{Ir} \\ \hline \end{gathered}$	$\begin{aligned} & 78 \\ & \mathrm{Pt} \\ & \hline \end{aligned}$	$\begin{array}{r} 79 \\ \mathrm{Au} \\ \hline \end{array}$	$\begin{array}{r} 80 \\ \mathrm{Hg} \\ \hline \end{array}$	81 TI	$\begin{array}{l\|} \hline 82 \\ \hline \end{array}$	$\begin{aligned} & 83 \\ & \mathrm{Bi} \\ & \hline \end{aligned}$	84	85 At	86 Rn
$7 \begin{aligned} & 87 \\ & \hline \mathrm{Fr} \\ & \hline \end{aligned}$	$\begin{aligned} & 88 \\ & \text { Ra } \end{aligned}$	$\begin{array}{\|l\|} \hline 89 \\ A C \\ \hline \end{array}$	\star	$\begin{array}{\|c\|} \hline 105 \\ \mathrm{Db} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 106 \\ \mathrm{Sg} \\ \hline \end{array}$	$\begin{aligned} & \hline 107 \\ & \mathrm{Bh} \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 108 \\ \mathrm{Hs} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 109 \\ \mathrm{Mt} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 110 \\ \mathrm{Ds} \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 111 \\ \mathrm{Rg} \end{array}$	$\begin{array}{\|c\|} \hline 112 \\ C n \\ \hline \end{array}$	$\begin{aligned} & \hline 113 \\ & \mathrm{Nh} \end{aligned}$	$\begin{array}{\|c\|} \hline 114 \\ \mathrm{FI} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 115 \\ \mathrm{Mc} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 116 \\ \mathrm{Lv} \end{array}$	$\begin{gathered} 117 \\ \text { Ts } \end{gathered}$	118 Og
			$\text { * } \begin{aligned} & 58 \\ & \mathrm{Ce} \end{aligned}$	$\begin{aligned} & \hline 59 \\ & \mathrm{Pr} \end{aligned}$	$\begin{array}{\|c\|} \hline 60 \\ \mathrm{Nd} \\ \hline \end{array}$	$\begin{aligned} & 61 \\ & \mathrm{Pm} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 62 \\ 5 \mathrm{~m} \\ \hline \end{array}$	$\begin{aligned} & \hline 63 \\ & \mathrm{Eu} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 64 \\ & \mathrm{Gd} \\ & \hline \end{aligned}$	$\begin{aligned} & 65 \\ & \mathrm{~Tb} \\ & \hline \end{aligned}$	$\begin{array}{l\|} \hline 66 \\ D y \\ \hline \end{array}$	$\begin{array}{r} 67 \\ \mathrm{HO} \\ \hline \end{array}$	$\begin{aligned} & \hline 68 \\ & \mathrm{Er} \\ & \hline \end{aligned}$	$\begin{array}{c\|} \hline 69 \\ \mathrm{Tm} \\ \hline \end{array}$	$\begin{aligned} & 70 \\ & \mathrm{Yb} \\ & \hline \end{aligned}$	71 1	
			* ${ }^{90}$	$\begin{aligned} & 91 \\ & \mathrm{~Pa} \\ & \hline \end{aligned}$	$\begin{aligned} & 92 \\ & U \\ & \hline \end{aligned}$	$\begin{aligned} & 93 \\ & \mathrm{~Np} \\ & \hline \end{aligned}$	$\begin{aligned} & 94 \\ & \mathrm{Pu} \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 95 \\ \text { Am } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 96 \\ \mathrm{Cm} \\ \hline \end{array}$	$\begin{aligned} & 97 \\ & \mathrm{Bk} \end{aligned}$	$\begin{aligned} & 98 \\ & \mathrm{Cf} \\ & \hline \end{aligned}$	$\begin{aligned} & 99 \\ & \text { Es } \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 100 \\ \mathrm{Fm} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 101 \\ \mathrm{Md} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 102 \\ \mathrm{No} \\ \hline \end{array}$	103 Lr	

Permutation packing and electrons

A little chemistry...

- Quantum numbers describe trajectories of electrons.

Permutation packing and electrons

A little chemistry...

- Quantum numbers describe trajectories of electrons.
- n (principal number) determines the electron shell

$$
n=1,2,3, \ldots
$$

Permutation packing and electrons

A little chemistry...

- Quantum numbers describe trajectories of electrons.
- n (principal number) determines the electron shell

$$
n=1,2,3, \ldots
$$

- ℓ (orbital angular momentum) determines the shape of the orbital

$$
0 \leq \ell \leq n-1
$$

Permutation packing and electrons

A little chemistry...

- Quantum numbers describe trajectories of electrons.
- n (principal number) determines the electron shell

$$
n=1,2,3, \ldots
$$

- ℓ (orbital angular momentum) determines the shape of the orbital

$$
0 \leq \ell \leq n-1
$$

- m (magnetic number) determines number of orbitals and orientation within shell

$$
-\ell \leq m \leq \ell
$$

Permutation packing and electrons

A little chemistry...

- Quantum numbers describe trajectories of electrons.
- n (principal number) determines the electron shell

$$
n=1,2,3, \ldots
$$

- ℓ (orbital angular momentum) determines the shape of the orbital

$$
0 \leq \ell \leq n-1
$$

- m (magnetic number) determines number of orbitals and orientation within shell

$$
-\ell \leq m \leq \ell
$$

- Two possible spin numbers for each choice of (n, ℓ, m)

Notation for copies of 123 in $1 \oplus 21 \oplus \cdots \oplus 21(\oplus 1)$

Observation: copies of 123 come in pairs.
$1 \oplus 21 \oplus \cdots \oplus 21 \oplus 1$

Given $x y z$ embedding of 123 where y is even, $x(y+1) z$ is also a 123 . We will assign a tuple of integers to each such pair.

Notation for copies of 123 in $1 \oplus 21 \oplus \cdots \oplus 21(\oplus 1)$

Observation: copies of 123 come in pairs.
$1 \oplus 21 \oplus \cdots \oplus 21 \oplus 1$

Given $x y z$ embedding of 123 where y is even, $x(y+1) z$ is also a 123 . We will assign a tuple of integers to each such pair.

Copies of 123 mapped to tuples

$x y z$ corresponds to the tuple (n, ℓ, m) where...

- $|m|$ is the layer where x is found (count layers starting with 0).
- m is negative if we use the smaller entry in the layer as x, positive if we use the larger entry.
- ℓ is the layer of size 2 where y is found (count layers starting with 0).
- $n+\ell+3=z$.

Copies of 123 mapped to tuples

$x y z$ corresponds to the tuple (n, ℓ, m) where...

- $|m|$ is the layer where x is found (count layers starting with 0).
- m is negative if we use the smaller entry in the layer as x, positive if we use the larger entry.
- ℓ is the layer of size 2 where y is found (count layers starting with 0).
- $n+\ell+3=z$.

Example: $1 \oplus 21 \oplus 21 \oplus 21=1 \quad 325476$

copies	tuple	copies	tuple	copies	tuple
124,134	$(1,0,0)$	146,156	$(2,1,0)$	147,157	$(3,1,0)$
125,135	$(2,0,0)$	246,256	$(2,1,-1)$	247,257	$(3,1,-1)$
126,136	$(3,0,0)$	346,356	$(2,1,1)$	347,357	$(3,1,1)$
127,137	$(4,0,0)$				

These tuples are valid quantum numbers

Layer 0 contains 1.
Layer L contains $2 L$ and $2 L+1$. (For even length, the last layer has one point.)

Construction: $x y z$ is a 123 occurrence with...

- x in layer $|m|, y$ in layer $\ell+1$, and z in layer $\ell+2$ or higher.

Consequences:

- $z \geq 2(\ell+2)$ and $n=z-\ell-3$ imply $n \geq \ell+1 \geq 1$ and so $\ell \leq n-1$.
- x in an earlier layer than y implies $|m|+1 \leq \ell+1$ and so $|m| \leq \ell$.
- A new ℓ value is introduced for each even permutation length.

Periodic Table, Take 2

Electron Configurations in the Perodic Table

Subshell is (n, ℓ) with ℓ given by $s(\ell=0), p(\ell=1), d(\ell=2), f(\ell=3)$. e.g. Calcium has subshells with

$$
(n, \ell) \in\{(1,0),(2,0),(2,1),(3,0),(3,1),(4,0)\} .
$$

Packing patterns in restricted permutations

123s to electrons

e.g. Calcium has subshells with $(n, \ell) \in\{(1,0),(2,0),(2,1),(3,0),(3,1),(4,0)\}$.
Subshell: Know n and ℓ. Need all tuples (n, ℓ, m) where $-\ell \leq m \leq \ell$

123s to electrons

e.g. Calcium has subshells with
$(n, \ell) \in\{(1,0),(2,0),(2,1),(3,0),(3,1),(4,0)\}$.
Subshell: Know n and ℓ. Need all tuples (n, ℓ, m) where $-\ell \leq m \leq \ell$
We saw the copies of 123 in $1 \oplus 21 \oplus 21 \oplus 21=1325476$ are:

copies	tuple	copies	tuple	copies	tuple
124,134	$(1,0,0)$	146,156	$(2,1,0)$	147,157	$(3,1,0)$
125,135	$(2,0,0)$	246,256	$(2,1,-1)$	247,257	$(3,1,-1)$
126,136	$(3,0,0)$	346,356	$(2,1,1)$	347,357	$(3,1,1)$
127,137	$(4,0,0)$				

Future Directions

- Determine $d_{\sigma}(\rho)$ for other patterns.
- Joint distributions of patterns.
- Bijections between pattern embeddings and other combinatorial objects.

References

- Michael H. Albert, M. D. Atkinson, C. C. Handley, D. A. Holton, and W. Stromquist, On packing densities of permutations, Electronic Journal of Combinatorics 9 (2002), R5.
- Reid Barton, Packing Densities of Patterns, Electronic Journal of Combinatorics 11 (2004), R80.
- Cathleen Battiste Presutti and Walter Stromquist, Packing rates of measures and a conjecture for the packing density of 2413, in Permutation Patterns (2010), S. Linton, N. Ruskuc, and V. Vatter, Eds., vol. 376 of London Mathematical Society Lecture Note Series, Cambridge University Press, pp. 287-316.
- Alkes Price, Packing densities of layered patterns, Ph.D. thesis, University of Pennsylvania, 1997.
- The On-Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org, 2020.

Thanks for listening!

slides at faculty.valpo.edu/lpudwell
email: Lara.Pudwell@valpo.edu

Permutation Patterns 2020

Valparaiso University (Indiana, USA)
June 29-July 3, 2020
See permutationpatterns.com for more info!

