Automated Conjecturing in Mathematics - with the CONJECTURING Program

Craig Larson (joint work with Nico Van Cleemput)

Virginia Commonwealth University Ghent University

RUTGERS EXPERIMENTAL MATHEMATICS SEMINAR 28 March 2019

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Problem 1.

Given an object-type and an invariant, find a *theory* of the invariant.

- Graphs & independence number
- Matrices & determinant
- Integers & number of ways to represent as a sum of 2 primes

- Chomp P-positions & number of cookies
- Intersecting Set Systems & size of the family

Given an object-type and a property, find a theory of the property.

- Graphs & hamiltonicity
- Matrices & total unimodularity
- Integers & primality
- Chomp positions & whether they are P-positions

Purpose of the talk

To relate some experiments.

• To relate a program and available code that might be useful.

To suggest that much more is possible.

Two Main Examples

How can we get better upper and lower bounds for the independence number of a graph?

How can we get better necessary or sufficient conditions for the property of being Hamiltonian?

What do we do?

- If we want better bounds for the independence number we think about what bounds are known, what graphs are problematic, form conjectures as functions of usually-existing invariants, and check the conjectures against familiar graphs.
- If we want better necessary and/or sufficient conditions for the property of being Hamiltonian we think about what upper and lower bounds are known, what graphs are problematic, form conjectures as functions of usually-existing properties, and check the conjectures against familiar graphs.

The Independence Number of a Graph

• The independence number α of a graph is the largest number of mutually non-adjacent vertices.

$$\alpha = 4.$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Generating Possible Bounds for an Invariant

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

GRAFFITI Heuristics to Find New Bounds for an Invariant

• Generating expressions isn't enough.

- They need to be filtered somehow.
- Truth for examples is one filter.
- Fajtlowicz's Dalmatian heuristic: only store an expression/statement if it gives a better bound for at least one stored object.

GRAFFITI Heuristics to Find New Bounds for an Invariant

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

The CONJECTURING Process

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Graph Theory Coding

- 112 efficiently computable properties, 36 intractable properties.
- 585+ graphs (and various collections: Sloane, DIMACS, pebbling)
- 127 efficiently computable invariants, and 33 intractable invariants.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Database of values of (most of) these.

The THEORY variable

- Ideally we want conjectures that are not implied by existing theory (theoretical bounds, known bounds),
- that is, conjectures that give a better bound for at least one graph,

- so, for us, at least one graph in our database.
- We call this the theory input.

Best Lower Bounds for Independence

• $\alpha \geq$ radius.

• $\alpha \geq$ residue.

• $\alpha \geq$ critical independence number

• $\alpha \geq \max_even_minus_even_horizontal$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

A Conjectured Lower Bound Theorem

Theorem

- For any graph G, $\alpha(G) \ge \Delta(G) T(G)$.
- $\Delta(G) = maximum degree, T(G) = number of triangles.$

Proof.

Assume the statement is true for graphs with fewer than m edges. Let G be a graph with m edges and v be a vertex of maximum degree. It is easy to see that the conjecture is true in any case where T(G) = 0. We can assume there is an edge e not incident to v in some triangle. Let G' be the graph formed by removing edge *e* (but not its incident vertices). So, by assumption, $\alpha(G') \geq \Delta(G') - T(G')$. We see that $\alpha(G') - 1 \leq \alpha(G)$, $\Delta(G') = \Delta(G)$ and that $T(G') + 1 \leq T(G)$. Then $\alpha(G) \ge \alpha(G') - 1 \ge (\Delta(G') - T(G')) - 1 \ge 0$ $\Delta(G) - (T(G) - 1) - 1 = \Delta(G) - T(G).$

An Open Lower Bound Conjecture

$\alpha \geq \min(\text{girth, floor(lovasz_theta)})$

Equivalently, $\alpha \geq \texttt{girth} \text{ or } \alpha = \texttt{floor(lovasz_theta)}$

Best Upper Bounds for Independence

- $\alpha \leq \text{annihilation number}$
- $\alpha \leq$ fractional independence number
- ▶ α ≤ Lovász number
- $\alpha \leq \text{Cvetković bound}$
- $\alpha \leq$ order matching number.
- $\alpha \leq$ Hansen-Zheng bound.

(The Hansen-Zheng bound is $\lfloor \frac{1}{2} + \sqrt{\frac{1}{4} + \text{order}^2 - \text{order} - 2 \cdot \text{size}} \rfloor$.)

A Conjectured Upper Bound Theorem

Theorem

For any connected graph, $\alpha \leq \text{order} - \text{radius}$.

(日)、

э

r-ciliates: $C_{1,1}$, $C_{3,0}$, $C_{2,2}$

A Conjectured Upper Bound Theorem

Theorem

For any connected graph, $\alpha \leq \text{order} - \text{radius}$.

Proof.

Let *G* be a connected graph with radius *r*, and *r*-ciliate $C_{p,q}$ (with r = p + q). Note that an *r*-ciliate is bipartite. It is easy to check that $n(C_{p,q}) = 2p(q + 1)$, $\alpha(C_{p,q}) = p(q + 1)$, and $\alpha(C_{p,q}) \le n(C_{p,q}) - r(C_{p,q})$. Let $V' = V(G) \setminus V(C_{p,q})$, and n' = |V'|. Then $\alpha(G) \le \alpha(C_{p,q}) + n' \le (n(C_{p,q}) - r(C_{p,q})) + n' = (n(G) - n') - r(G) + n' = n(G) - r(G)$.

An Open Upper Bound Conjecture

 $\alpha \leq \texttt{(average_distance)^(degree_sum)}$

• Tested on all graphs of order ≤ 10 .

▶ Tested on Random Graphs of all orders up to order 120.

Graph Hamiltonicity

A Hamiltonian cycle in a graph is a cycle that covers all of the vertices of the graph.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Necessary Conditions for Hamiltonicity

► If a graph is hamiltonian then it is 2-connected.

If a graph is hamiltonian then it is van den heuvel (Laplacian eigenvalues condition).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A Conjectured Theorem

Thm. (is_hamiltonian)->((is_cubic)->(is_class1))

If is a graph is hamiltonian then if it is cubic it is hamiltonian.

If a graph is hamiltonian then either it is not cubic or it is class 1.

(日) (日) (日) (日) (日) (日) (日) (日)

If a graph is hamiltonian and cubic then it is class 1.

Sufficient Conditions for Hamiltonicity

(Dirac) If the minimum degree of a graph is at least half the order then the graph is hamiltonian.

(Note: all graphs are assumed to be connected and have at least 3 vertices.)

(Ore) If the sum of the degrees of any pair of non-adjacent vertices is at least n then the graph is hamiltonian.

(Chvatal-Erdős) If the vertex connectivity of a graph is at least the independence number then the graph is hamiltonian.

Thm. ((is_two_connected) & (is_circular_planar))->
(is_hamiltonian)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Thm. (is_planar_transitive)->(is_hamiltonian)

If a graph is planar and vertex-transitive then it is hamiltonian.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Thm. (is_planar_transitive)->(is_hamiltonian)

If a graph is planar and vertex-transitive then it is hamiltonian.

- 1. Every vertex-transitive graph is regular.
- 2. (Mader, 1970) If a graph is *d*-regular vertex-transitive with connectivity κ then $\frac{2(d+1)}{3} \leq \kappa$.
- 3. (Tutte, 1956) Every 4-connected planar graph is Hamiltonian.
- 4. (Zelinka, 1977) If a graph is planar, vertex-transitive and 3-regular then it is one of 8 specific graphs or an *n*-sided prism.
- 5. Only need to check the prisms!

Thm. ((is_bipartite) & (is_strongly_regular))->(is_hamiltonian)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

An Open Hamiltonicity Conjecture

Conj. ((is_bipartite) &
 (is_distance_regular))->(is_hamiltonian)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

CONJECTURING program inputs

Inputs:

- Examples of objects.
- Definitions of invariants (or properties) for these objects.

- An Invariant (or property) you want bounds for.
- Whether you want upper or lower bounds.
- Any known Theorems (theoretical bounds).

```
#Run 4 of Day 3
current_graph_objects = [k3,pete,c5,k5_5,k3_4,EH,c7_chord,bow_tie,k5,p3,glasses,fish,c5_tail,triangle_with_
current_graph_objects.append(flucht)
current_graph_objects.append(frucht)
current_graph_objects.append(heavood)
```

```
#properties = [Graph.is_hamiltonian, Graph.is_clique,
Graph.is_regular,Graph.is_cycle,Graph.is_bipartite,Graph.is_chordal,Graph.is_strongly_regular,Graph.is_eule
Graph.is triangle free, Graph.is distance regular, Graph.is perfect, Graph.is planar]
```

#the properties list used in the conjecturing program will be the on from gt.sage

```
property_of_interest = properties.index(Graph.is_hamiltonian)
```

```
theorem1 = lambda g: g.is_bipartite() and g.is_strongly_regular()
```

```
theorems = [Graph.is_cycle, Graph.is_clique, theorem1]
```

```
conjs = propertyBasedConjecture(current_graph_objects, properties, property_of_interest, theory = theorems)
for c in conjs:
    print c
```

```
((is_planar)&(is_regular))->(is_hamiltonian)
((is_gallai_tree)^(is_chordal))->(is_hamiltonian)
((is_perfect)&(is_distance_regular))->(is_hamiltonian)
```

▲ロト ▲掃 ▶ ▲ 臣 ▶ ▲ 臣 ▶ → 臣 → の Q (2)

Bounds for Chomp invariants

▲□ > ▲圖 > ▲目 > ▲目 > → 目 - のへで

Bounds for Chomp invariants

Conjectured Theorem:

For any position where the *previous-player-to-play* has a winning strategy (a *P*-position),

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

the number of cookies on the board $\geq 2^*$ the number of (non-empty) columns -1.

Number Theory—Goldbach's Conjecture

For any even integer x > 3 let Goldbach(x) be the number of ways x can be written as a sum of two primes.

```
Goldbach(x) \ge 1/digits10(x)
```

```
Goldbach(x) \ge digits10(x) - 1
```

Matrix Theory—Determinants of Symmetric Matrices

$$egin{array}{l} {
m determinant(x)} \leq {
m permanent(x)} \ {
m determinant(x)} \leq {
m maximum_eigenvalue(x)*trace(x)} \ {
m determinant(x)} \leq ({
m rank(x)}+1)*{
m spectral_radius(x)} \end{array}$$

 $\begin{aligned} & \mathsf{determinant}(x) \geq \mathsf{minimum_eigenvalue}(x)^* \mathsf{separator}(x) \\ & \mathsf{determinant}(x) \geq \mathsf{minimum}(\mathsf{permanent}(x), \, \mathsf{log}(\mathsf{nullity}(x))) \end{aligned}$

$\mathsf{input_sequence} = [1, 3, 4, 7, 11]$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $input_sequence = [1, 3, 4, 7, 11]$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

$$\begin{split} \mathsf{last_term}(\mathsf{x}) &\leq \mathsf{sum_of_previous_two}(\mathsf{x}) \\ \mathsf{last_term}(\mathsf{x}) &\leq 2^*\mathsf{previous_term}(\mathsf{x}) + 1 \end{split}$$

$\mathsf{input_sequence} = [100, 104, 108]$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $input_sequence = [100, 104, 108]$

 $last_term(x) \ge average_difference(x) + previous_term(x)$

 $last_term(x) \le average_difference(x) + previous_term(x)$

 $input_sequence = [100, 104, 108]$

 $last_term(x) \ge average_difference(x) + previous_term(x)$

 $last_term(x) \le average_difference(x) + previous_term(x)$

[100, 104, 108, 112]

 $input_sequence = [1, 3, 9, 27, 81]$

```
input\_sequence = [1, 3, 9, 27, 81]
```

```
\last\_term(x) \ge average\_ratio(x)*previous\_term(x) \\ last\_term(x) \ge average\_ratio(x) \\ \last\_term(x) \ge average\_ratio(x) \\ \natio(x) \_av \_ratio(x) \\ \natio(
```

```
\last\_term(x) \le average\_ratio(x) \land previous\_term(x) \\ last\_term(x) \le average\_ratio(x)*previous\_term(x) \\ \label{eq:last_term}
```

```
input\_sequence = [1, 3, 9, 27, 81]
```

```
\last\_term(x) \ge average\_ratio(x)*previous\_term(x)
\last\_term(x) \ge average\_ratio(x)
```

```
\last\_term(x) \le average\_ratio(x) \land previous\_term(x) \\ last\_term(x) \le average\_ratio(x)*previous\_term(x) \\ \label{eq:last_term}
```

[1, 3, 9, 27, 81, 243]

Thank You!

Automated Conjecturing in Sage: nvcleemp.github.io/conjecturing/

Graph Brain Project:

github.com/math1um/objects-invariants-properties

clarson@vcu.edu