Automated Conjecturing in Mathematics
 - with the CONJECTURING Program

Craig Larson
(joint work with Nico Van Cleemput)

Virginia Commonwealth University
Ghent University

RUTGERS EXPERIMENTAL MATHEMATICS SEMINAR 28 March 2019

Problem 1.

Given an object-type and an invariant, find a theory of the invariant.

- Graphs \& independence number
- Matrices \& determinant
- Integers \& number of ways to represent as a sum of 2 primes
- Chomp P-positions \& number of cookies
- Intersecting Set Systems \& size of the family

Problem 2.

Given an object-type and a property, find a theory of the property.

- Graphs \& hamiltonicity
- Matrices \& total unimodularity
- Integers \& primality
- Chomp positions \& whether they are P-positions

Purpose of the talk

- To relate some experiments.
- To relate a program and available code that might be useful.
- To suggest that much more is possible.

Two Main Examples

- How can we get better upper and lower bounds for the independence number of a graph?
- How can we get better necessary or sufficient conditions for the property of being Hamiltonian?

What do we do?

- If we want better bounds for the independence number we think about what bounds are known, what graphs are problematic, form conjectures as functions of usually-existing invariants, and check the conjectures against familiar graphs.
- If we want better necessary and/or sufficient conditions for the property of being Hamiltonian we think about what upper and lower bounds are known, what graphs are problematic, form conjectures as functions of usually-existing properties, and check the conjectures against familiar graphs.

The Independence Number of a Graph

- The independence number α of a graph is the largest number of mutually non-adjacent vertices.

$$
\alpha=4 .
$$

Generating Possible Bounds for an Invariant

graffiti Heuristics to Find New Bounds for an Invariant

- Generating expressions isn't enough.
- They need to be filtered somehow.
- Truth for examples is one filter.
- Fajtlowicz's Dalmatian heuristic: only store an expression/statement if it gives a better bound for at least one stored object.

graffiti Heuristics to Find New Bounds for an Invariant

The conjecturing Process

Graph Theory Coding

- 112 efficiently computable properties, 36 intractable properties.
- 585+ graphs (and various collections: Sloane, DIMACS, pebbling)
- 127 efficiently computable invariants, and 33 intractable invariants.
- Database of values of (most of) these.

The THEORY variable

- Ideally we want conjectures that are not implied by existing theory (theoretical bounds, known bounds),
- that is, conjectures that give a better bound for at least one graph,
- so, for us, at least one graph in our database.
- We call this the theory input.

Best Lower Bounds for Independence

- $\alpha \geq$ radius.
- $\alpha \geq$ residue.
- $\alpha \geq$ critical independence number
- $\alpha \geq$ max_even_minus_even_horizontal

A Conjectured Lower Bound Theorem

Theorem
For any graph $G, \alpha(G) \geq \Delta(G)-T(G)$.
$\Delta(G)=$ maximum degree, $T(G)=$ number of triangles.

Proof.

Assume the statement is true for graphs with fewer than m edges. Let G be a graph with m edges and v be a vertex of maximum degree. It is easy to see that the conjecture is true in any case where $T(G)=0$. We can assume there is an edge e not incident to v in some triangle. Let G^{\prime} be the graph formed by removing edge e (but not its incident vertices). So, by assumption, $\alpha\left(G^{\prime}\right) \geq \Delta\left(G^{\prime}\right)-T\left(G^{\prime}\right)$. We see that $\alpha\left(G^{\prime}\right)-1 \leq \alpha(G)$, $\Delta\left(G^{\prime}\right)=\Delta(G)$ and that $T\left(G^{\prime}\right)+1 \leq T(G)$. Then $\alpha(G) \geq \alpha\left(G^{\prime}\right)-1 \geq\left(\Delta\left(G^{\prime}\right)-T\left(G^{\prime}\right)\right)-1 \geq$
$\Delta(G)-(T(G)-1)-1=\Delta(G)-T(G)$.

An Open Lower Bound Conjecture

```
\alpha\geqmin(girth, floor(lovasz_theta))
```

Equivalently, $\alpha \geq$ girth or $\alpha=$ floor(lovasz_theta)

Best Upper Bounds for Independence

- $\alpha \leq$ annihilation number
- $\alpha \leq$ fractional independence number
- $\alpha \leq$ Lovász number
- $\alpha \leq$ Cvetković bound
- $\alpha \leq$ order - matching number.
- $\alpha \leq$ Hansen-Zheng bound.
(The Hansen-Zheng bound is
$\left.\left\lfloor\frac{1}{2}+\sqrt{\frac{1}{4}+\text { order }^{2}-\text { order }-2 \cdot \operatorname{size}}\right\rfloor.\right)$

A Conjectured Upper Bound Theorem

Theorem
For any connected graph, $\alpha \leq$ order - radius.

r-ciliates: $C_{1,1}, C_{3,0}, C_{2,2}$

A Conjectured Upper Bound Theorem

Theorem
For any connected graph, $\alpha \leq$ order - radius.

Proof.

Let G be a connected graph with radius r, and r-ciliate $C_{p, q}$ (with $r=p+q)$. Note that an r-ciliate is bipartite. It is easy to check that $n\left(C_{p, q}\right)=2 p(q+1), \alpha\left(C_{p, q}\right)=p(q+1)$, and $\alpha\left(C_{p, q}\right) \leq n\left(C_{p, q}\right)-r\left(C_{p, q}\right)$.
Let $V^{\prime}=V(G) \backslash V\left(C_{p, q}\right)$, and $n^{\prime}=\left|V^{\prime}\right|$. Then
$\alpha(G) \leq \alpha\left(C_{p, q}\right)+n^{\prime} \leq\left(n\left(C_{p, q}\right)-r\left(C_{p, q}\right)\right)+n^{\prime}=$
$\left(n(G)-n^{\prime}\right)-r(G)+n^{\prime}=n(G)-r(G)$.

An Open Upper Bound Conjecture

$\alpha \leq(\text { average_distance })^{\text {- }}$ (degree_sum)

- Tested on all graphs of order ≤ 10.
- Tested on Random Graphs of all orders up to order 120.

Graph Hamiltonicity

A Hamiltonian cycle in a graph is a cycle that covers all of the vertices of the graph.

Necessary Conditions for Hamiltonicity

- If a graph is hamiltonian then it is 2-connected.
- If a graph is hamiltonian then it is van den heuvel (Laplacian eigenvalues condition).

A Conjectured Theorem

Thm. (is_hamiltonian)->((is_cubic)->(is_class1))

If is a graph is hamiltonian then if it is cubic it is hamiltonian.

If a graph is hamiltonian then either it is not cubic or it is class 1.

If a graph is hamiltonian and cubic then it is class 1.

Sufficient Conditions for Hamiltonicity

(Dirac) If the minimum degree of a graph is at least half the order then the graph is hamiltonian.
(Note: all graphs are assumed to be connected and have at least 3 vertices.)
(Ore) If the sum of the degrees of any pair of non-adjacent vertices is at least n then the graph is hamiltonian.
(Chvatal-Erdős) If the vertex connectivity of a graph is at least the independence number then the graph is hamiltonian.

Three Conjectured Theorems

Thm. ((is_two_connected) \& (is_circular_planar))-> (is_hamiltonian)

Three Conjectured Theorems

Thm. (is_planar_transitive)->(is_hamiltonian)
If a graph is planar and vertex-transitive then it is hamiltonian.

Three Conjectured Theorems

Thm. (is_planar_transitive)->(is_hamiltonian)
If a graph is planar and vertex-transitive then it is hamiltonian.

1. Every vertex-transitive graph is regular.
2. (Mader, 1970) If a graph is d-regular vertex-transitive with connectivity κ then $\frac{2(d+1)}{3} \leq \kappa$.
3. (Tutte, 1956) Every 4-connected planar graph is Hamiltonian.
4. (Zelinka, 1977) If a graph is planar, vertex-transitive and 3 -regular then it is one of 8 specific graphs or an n-sided prism.
5. Only need to check the prisms!

Three Conjectured Theorems

Thm. ((is_bipartite) \&
(is_strongly_regular))->(is_hamiltonian)

An Open Hamiltonicity Conjecture

Conj. ((is_bipartite) \&
(is_distance_regular))->(is_hamiltonian)

CONJECTURING program inputs

Inputs:

- Examples of objects.
- Definitions of invariants (or properties) for these objects.
- An Invariant (or property) you want bounds for.
- Whether you want upper or lower bounds.
- Any known Theorems (theoretical bounds).

```
#Run 4 of Day 3
current_graph_objects = [k3,pete,c5,k5_5,k3_4,EH,c7_chord,bow_tie,k5,p3,glasses,fish,c5_tail,triangle_with_
current_graph_objects.append(blanusa2)
current_graph_objects.append(frucht)
current_graph_objects.append(heawood)
#properties = [Graph.is_hamiltonian, Graph.is_clique,
Graph.is_regular,Graph.is_cycle,Graph.is_bipartite,Graph.is_chordal,Graph.is_strongly_regular,Graph.is_eul\epsilon
Graph.is_triangle_free, Graph.is_distance_regular, Graph.is_perfect, Graph.is_planar]
#the properties list used in the conjecturing program will be the on from gt.sage
property_of_interest = properties.index(Graph.is_hamiltonian)
theorem1 = lambda g: g.is_bipartite() and g.is_strongly_regular()
theorems = [Graph.is_cycle, Graph.is_clique, theorem1]
conjs = propertyBasedConjecture(current_graph_objects, properties, property_of_interest, theory = theorems)
for c in conjs:
    print c
    ((is_planar)&(is_regular))->(is_hamiltonian)
    ((is_gallai_tree)^(is_chordal))->(is_hamiltonian)
    ((is_perfec\overline{t})&(is_dist̄ance_regular))}->>(is_hamiltonian
```


Bounds for Chomp invariants

\&	(6)	(6)
(3)	(3)	
(3)		

\&	¢	(4)	[8)
(6)		(4,1,1,1)	
(9)			
(6)			

*	¢	9
(9)	(9)	
(9)		(3,2,1,1,1)
(9)		
(3)		

Bounds for Chomp invariants

Conjectured Theorem:

For any position where the previous-player-to-play has a winning strategy (a P-position),
the number of cookies on the board $\geq 2^{*}$ the number of (non-empty) columns -1.

Number Theory—Goldbach's Conjecture

For any even integer $x>3$ let Goldbach(x) be the number of ways x can be written as a sum of two primes.

Goldbach $(\mathrm{x}) \geq 1 /$ digits $10(\mathrm{x})$

Goldbach $(\mathrm{x}) \geq \operatorname{digits} 10(\mathrm{x})-1$

Matrix Theory—Determinants of Symmetric Matrices

```
determinant(x) \leq permanent(x)
determinant (x) \leq maximum_eigenvalue(x)* trace(x)
determinant (x) \leq (rank (x) + 1)*spectral_radius(x)
```

determinant $(x) \geq$ minimum_eigenvalue $(x) *$ separator (x) determinant $(x) \geq$ minimum $($ permanent $(x), \log ($ nullity $(x)))$

Integer Sequences

input_sequence $=[1,3,4,7,11]$

Integer Sequences

input_sequence $=[1,3,4,7,11]$
last_term $(x) \geq$ average_difference $(x)+1$
last_term $(x) \geq$ previous_term $(x)+1$
last_term $(x) \geq \min \left(\right.$ sum_of_previous_two(x), 2* ${ }^{*}$ previous_term (x))
last_term $(\mathrm{x}) \leq$ sum_of_previous_two (x)
last_term $(x) \leq 2^{*}$ previous_term $(x)+1$

Integer Sequences

input_sequence $=[100,104,108]$

Integer Sequences

input_sequence $=[100,104,108]$
last_term $(x) \geq$ average_difference $(x)+$ previous_term (x)
last_term $(\mathrm{x}) \leq$ average_difference $(\mathrm{x})+$ previous_term (x)

Integer Sequences

input_sequence $=[100,104,108]$
last_term $(x) \geq$ average_difference $(x)+$ previous_term (x)
last_term $(\mathrm{x}) \leq$ average_difference $(\mathrm{x})+$ previous_term (x)
[100, 104, 108, 112]

Integer Sequences

input_sequence $=[1,3,9,27,81]$

Integer Sequences

```
input_sequence = [1, 3, 9, 27, 81]
last_term(x) \geq average_ratio(x)*previous_term(x)
last_term(x) \geq average_ratio(x)
```

last_term $(\mathrm{x}) \leq$ average_ratio $(\mathrm{x})^{\wedge}$ previous_term (x) last_term $(\mathrm{x}) \leq$ average_ratio $(\mathrm{x}) *$ previous_term (x)

Integer Sequences

$$
\text { input_sequence }=[1,3,9,27,81]
$$

last_term $(x) \geq$ average_ratio(x)*previous_term (x) last_term $(x) \geq$ average_ratio(x)
last_term $(\mathrm{x}) \leq$ average_ratio $(\mathrm{x})^{\wedge}$ previous_term (x) last_term $(\mathrm{x}) \leq$ average_ratio $(\mathrm{x}) *$ previous_term (x)
$[1,3,9,27,81,243]$

Thank You!

Automated Conjecturing in Sage: nvcleemp.github.io/conjecturing/

Graph Brain Project:

github.com/math1um/objects-invariants-properties
clarson@vcu.edu

