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Permutations

A permutation of length n is an ordering of the elements of
{1, . . . , n}. Let Sn be the set of permutations of length n.

Example

2613475 is a permutation of length 7.

1234567 is a di↵erent permutation of length 7. This is the
identity permutation of length 7.

A descent of a permutation ⇡ = ⇡1 · · ·⇡n 2 Sn is an index i such
that ⇡i > ⇡i+1.

Example

The descents of 2613475 are 2 and 6.

The identity permutation 1234567 has no descents.
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Permutation Patterns

Definition

Given permutations � and ⌧ , we say that � contains the pattern ⌧
if there are (not necessarily consecutive) entries in � that have the
same relative order as ⌧ . Otherwise, we say � avoids the pattern ⌧ .

Example

The permutation 31524 contains the pattern 231.
The permutation 31524 avoids the pattern 321.
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West’s Stack-Sorting Map

s : 416352 7!
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t-Stack-Sortable Permutations

Definition

Say a permutation ⇡ 2 Sn is t-stack-sortable if st(⇡) = 123 · · · n,
where st denotes the tth iterate of s. Let Wt(n) denote the
number of t-stack-sortable permutations in Sn.

Theorem (Knuth, 1968)

We have

W1(n) = Cn =
1

n + 1

✓
2n

n

◆
.

Theorem (Zeilberger, 1992)

We have

W2(n) =
2

(n + 1)(2n + 1)

✓
3n

n

◆
.
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Estimates for t-Stack-Sortable Permutations

Theorem (Stankova, West, 2002)

We have Wt(n)  (t + 1)2n.

Conjecture (Bóna)

We have Wt(n) 
�(t+1)n

n

�
.

Theorem (D., 2016)

We have W3(n) < 12.53296n and W4(n) < 21.97225n.

Theorem (D., 2019)

We have limn!1
n
p
W3(n) � 7.96984.
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Tail Length Enumeration

Suppose ⇡ = ⇡1 · · ·⇡n 2 Sn.

Tail length: tl(⇡) is the smallest nonnegative integer ` such that
⇡n�` 6= n � `. E.g., tl(312456789) = 6. Let tls(⇡) = tl(s(⇡)).

Zeilberger statistic: zeil(⇡) is the largest integer m such that
n, n � 1, . . . , n �m + 1 appear in decreasing order in ⇡.

Zeilberger counted 2-stack-sortable permutations according to the
additional statistic zeil and removed a “catalytic variable.”

I reproved the formula for W2(n) via a similar approach with zeil
replaced by tls. This generalizes, allowing me to find a lower bound
for W3(n) and to count several other things (mentioned later).

Interesting identity: zeil(⇡) = min{tls(⇡), rmax(⇡)}.
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The Fertility of a Permutation

Definition (West, 1990)

The fertility of a permutation ⇡ is |s�1(⇡)|.

Definition (Bousquet-Mélou, 2000)

A permutation ⇡ is called sorted if it has positive fertility (i.e.,
s�1(⇡) 6= ;).

West computed the fertilities of a few very specific types of
permutations.

Bousquet-Mélou gave an algorithm to decide whether or not a
permutation is sorted. She asked for a general method that
could be used to compute the fertility of any permutation.
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Valid Hook Configurations

Configuration of Hooks
+ 3 Magical Properties
= Valid Hook Configuration

This valid hook configuration
induces the valid composition
(3, 4, 3, 3). Let V(⇡) denote the
set of valid compositions of ⇡.

Theorem (D., 2016)

The fertility of a permutation ⇡ is given by

|s�1(⇡)| =
X

(q0,...,qk )2V(⇡)

kY

t=0

Cqt .
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Uniquely Sorted Permutations

Definition

A permutation is uniquely sorted if its fertility is 1.

Theorem (D., Engen, Miller, 2018)

A permutation in Sn is uniquely sorted if and only if it is sorted

and has exactly
n � 1

2
descents.
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Lassalle’s Sequence

Definition

Lassalle’s sequence (Am)m�1 is defined by the recurrence

Am = (�1)m�1Cm +
m�1X

j=1

(�1)j�1

✓
2m � 1

2m � 2j � 1

◆
Am�jCj

subject to the initial condition A1 = 1.

Conjecture (Zeilberger)

The numbers Am are positive and increasing.

The proof is algebraic and does not hint at any combinatorial
interpretation for the numbers Am.
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Set Partitions, Acyclic Orientations, and Free Probability

By studying the cumulants of the “free semicircular law” and the
“free Poisson law,” Josuat-Vergès gave a combinatorial
interpretation of Lassalle’s sequence that involves set partitions
and acyclic orientations of certain graphs.
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The Main Bijection

Theorem (D., Engen, Miller, 2018)

There is a natural bijection � from the set of all valid hook
configurations to a set of objects that Josuat-Vergès considered.
Restricting � gives a bijection from the set of uniquely sorted
permutations to a special subset of Josuat-Vergès’ objects.

Corollary (D., Engen, Miller, 2018)

There are �kn+1(�1) valid hook configurations of permutations in
Sn. Here, kn+1(�) is the (n+ 1)st cumulant of the free Poisson law
with rate �.

There are Ak+1 uniquely sorted permutations in S2k+1.
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Symmetry in a Refinement of Lassalle’s Sequence

There are Ak+1 uniquely sorted permutations in S2k+1.

Definition

Let Ak+1(`) be the number of uniquely sorted permutations in
S2k+1 with first entry `.

Theorem (D., Engen, Miller, 2018)

For every k � 1, the sequence Ak+1(1),Ak+1(2), . . . ,Ak+1(2k + 1)
is symmetric.

Conjecture

For every k � 1, the sequence Ak+1(1),Ak+1(2), . . . ,Ak+1(2k + 1)
is log-concave.
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Doubly and Triply Sorted Permutations

What can we say about doubly sorted permutations (that is,
permutations with fertility 2)?

Using the fertility formula, it is easy to see that there are no
doubly sorted permutations of odd length. Counting doubly sorted
permutations of even length yields the sequence 1, 3, 31, 1186, . . ..

What can we say about triply sorted permutations (permutations
with fertility 3)?

They don’t exist!

Proof:

|s�1(⇡)| =
X

(q0,...,qk )2V(⇡)

kY

t=0

Cqt 6= 3.
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Fertility Numbers

Definition

A nonnegative integer f is called a fertility number if there exists a
permutations whose fertility is f .

Fertility Numbers:

0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14, 16, 17, 18,
20, 21, 22, 24, 25, 26, 27, 28, 29, 30

Infertility Numbers:

3, 7, 11, 15, 19, 23

Conjecture

There are “infinitely many” infertility numbers.
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Fertility Numbers

Theorem (D., 2018)

The set of fertility numbers is closed under multiplication.

If f is a fertility number, then there are “infinitely many”
permutations with fertility f .

Every nonnegative integer that is not congruent to 3 modulo
4 is a fertility number. The lower asymptotic density of the
set of fertility numbers is at least 1954/2565 ⇡ 0.7618.

The smallest fertility number that is congruent to 3 modulo 4
is 27.

If f is a fertility number, then there exists a permutation of
length at most f + 1 with fertility f .

Conjecture

The second-smallest fertility number that is congruent to 3 modulo
4 is 95.
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Permutation Class Preimages

Let Avn(⌧1, . . . , ⌧r ) be the set of permutations of length n that
avoid the patterns ⌧1, . . . , ⌧r .

Theorem

We have

|s�1(Avn(123))| = 0 for n � 4 (Easy);

|s�1(Avn(213))| = Cn (Knuth, 1968);

|s�1(Avn(231))| = 2
(n+1)(2n+1)

�3n
n

�
(Zeilberger, 1992);

|s�1(Avn(132))| = 2
(n+1)(2n+1)

�3n
n

�
(Bouvel, Guibert, 2014);

|s�1(Avn(312))| = 2
n(n+1)2

Pn
k=1

�n+1
k�1

��n+1
k

��n+1
k+1

�

(Bouvel, Guibert, 2014);

8.4199  limn!1 |s�1(Avn(321))|1/n  11.6569 (D., 2018).
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Permutation Class Preimages that are Permutation Classes

In some cases, the preimages of a permutation class under s form a
permutation class. For example:

s�1(Av(132, 231, 312, 321)) =
Av(1342, 2341, 3142, 3241, 3412, 3421)

s�1(Av(132, 312, 321)) = Av(1342, 3142, 3412, 3421)

s�1(Av(231, 312, 321)) = Av(2341, 3241, 3412, 3421)

s�1(Av(312, 321)) = Av(3412, 3421)

s�1(Av(231, 321)) = Av(2341, 3241, 45231)

s�1(Av(321)) = Av(35241, 34251, 45231)
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Permutation Class Preimages

Theorem (D., 2018)

We have

|s�1(Avn(132, 231, 321))| = |s�1(Avn(132, 312, 321))| =
�2n�2
n�1

�
.

The number of elements of s�1(Avn(132, 231, 321)) (or

s�1(Avn(132, 312, 321))) with m descents is
�n�1

m

�2
.
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Permutation Class Preimages

Theorem (D., 2018)

We have that |s�1(Avn(132, 231, 312))| is the Fine number Fn+1.

We can also count the permutations in s�1(Avn(132, 231, 312))
according to their numbers of descents or peaks, giving two
reFinements of the Fine numbers.
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Permutation Class Preimages

Theorem (D., 2019)

We have

X

n�0

|s�1(Avn(231, 321))|xn =
1

1� xC (xC (x))
,

where C (x) =
1�

p
1� 4x

2x
. One consequence is that

|Avn(2341, 3241, 45231)| = |Avn(4321, 4213)|.
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= |s�1(Avn(132, 231))|.

These numbers turn out to be what are called Boolean-Catalan
numbers.
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Stack-Sorting Words

For us, the word “word” means a word with positive integer letters.
We define stack-sorting for words as we did with permutations,
except there is one point of ambiguity. Can a letter sit on top of
another copy of itself in the stack?

Define fast : {words} ! {words} by sending a word through the
stack with the convention that a letter can sit on top of a copy of
itself.

Define slow : {words} ! {words} by sending a word through the
stack with the convention that a letter cannot sit on top of a copy
of itself.
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The Tortoise and the Hare

fast hare slow tortoise

3662451
hare��! 3241566

hare��! 2314566
hare��! 2134566

hare��! 1234566

3662451
tortoise����! 3624156

tortoise����! 3214566
tortoise����! 1234566
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The Tortoise and the Hare

Let hwihare be the smallest nonnegative integer k such that
harek(w) is an identity word. Define hwitortoise similarly.

Theorem (D., Kravitz, 2018)

For any integer n � 3, there exists a word ⌘n of length 2n + 1 such
that

h⌘nihare = 2n � 2 and h⌘nitortoise = n.

Conjecture

If w is a word of length m, then

hwihare � hwitortoise 
m � 5

2

and
hwihare  2hwitortoise � 2.
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T!HNASK

(where A<H<K<N< S<T< !)
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NASKT

!
H

(where A<H<K<N< S<T< !)
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!
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ASKTH

!
N

(where A<H<K<N< S<T< !)
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SKTH

!
N
A

(where A<H<K<N< S<T< !)
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SKTHA

!
N

(where A<H<K<N< S<T< !)
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SKTHAN

!

(where A<H<K<N< S<T< !)
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KTHAN

!
S

(where A<H<K<N< S<T< !)
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!
S
K

(where A<H<K<N< S<T< !)
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(where A<H<K<N< S<T< !)
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