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The language of betting
as a strategy for scientific communication

Point 1. The conventional vocabulary for statistical testing is too
complicated for scientific communication. We can communicate
statistical results better using the language of betting.

Point 2. We can communicate even better using fully defined
betting games.

Point 3. We can also avoid the fantasy of many worlds.



Betting language can make statistical conclusions appear less objective, and
this can play into the hands of those who think science is their enemy. But
confusion about statistics also weakens science.

The language of betting can

* clarify what statistical studies can and cannot accomplish, and

e clarify the games scientists must and do play — honest games that are
essential to the advancement of knowledge.

This is in the spirit of Andrew Gelman and John Carlin’s conclusion that the
only solution to the crisis about p-values is “to move toward a greater
acceptance of uncertainty and embracing of variation”.



Point 1

The conventional vocabulary for statistical testing
is too complicated for scientific communication.

We can communicate statistical results better
using the language of betting.



Conventional language for testing P against ()

Conventional concept

Conventional explanation

likelihood ratio

()(observation)

P(observation)

significance level:
a = P(test rejects )

Probability, given P is true,
that test will err by reject-
ing it by chance

power
= (J(test rejects P
]

When power is small, test
can reject only by chance.

Too complicated for scientific
communication:

Most teachers of statistics and
researchers who use p-values
cannot correctly answer
guestions about p-values.

e Powerisignored in most
applications.

p-value = P(1T" > t).

T 1s test statistic:

t is its observed value.

Probability, if P is true, of
getting a result as extreme
as the one observed.




Consider a typical medical research study, for
example designed to test the efficacy of a drug,
in which a null hypothesis H, (‘no effect’) is tested
against an alternative hypothesis H, (‘some
effect’). Suppose that the study results pass a test
of statistical significance (that is P-value <0.05) in
favor of H,. What has been shown?

H, is false.

H, is probably false.
H, is true.

H, is probably true.
Both (1) and (3)
Both (2) and (4)
None of the ab{:-ve.\/

NV s =

Blakeley B. McShane & David Gal (2017). Statistical significance and the dichotomization
of evidence, Journal of the American Statistical Association 112(519):885-895.

Gerd Gigerenzer (2018). Statistical rituals: The replication delusion and how we got
there, Advances in Methods and Practices in Psychological Science 1(2):198-218.

Suppose you have a treatment that you suspect
may alter performance on a certain task. You
compare the means of vyour control and
experimental groups (say, 20 subjects in each
sample). Furthermore, suppose you use a simple
independent means t-test and your result is
significant (t = 2.7, df = 18, p = .01). Please mark
each of the statements below as “true” or “false.”
“False” means that the statement does not follow
logically from the above premises. Also note that
several or none of the statements may be correct.

(1) You have absolutely disproved the null
hypothesis (i.e., there is no difference
between the population means).

(2)  You have found the probability of the null
hypothesis being true.

(3) You have absolutely proved your experi-
mental hypothesis (that there is a difference
between the population means).

(4) You can deduce the probability of the
experimental hypothesis being true.

(5) You know, if you decide to reject the null
hypothesis, the probability that you are
making the wrong decision.

(6) You have a reliable experimental finding in
the sense that if, hypothetically, the experi-
ment were repeated a great number of
times, you would obtain a significant result
on 99% of occasions.

False

False

False

False

False

False



Conventional language for testing P against ()

Conventional concept

Conventional explanation

Betting interpretation

likelihood ratio

()(observation)

P(observation)

Betting score

significance level:
o = P(test rejects P)

Probability, given P is true,
that test will err by reject-
ing it by chance

Inverse of betting score for a
winning all-or-nothing bet

power
= ()(test rejects P)

When power is small,
test can reject
only by chance.

When power is small,
betting score can be large
only by chance.

p-value = P(T > t).

1" is test statistic:

t is its observed value.

Probability, if P is true, of
getting a result as extreme
as the one observed.

Inverse of betting score for
an all-or-nothing bet that
cheats




Definition of betting score.

You claim phenomenon Y is described by probability distribution P.

You back this up by offering me any payoff f(Y') for its expected value

under P.

I buy a nonnegative f with expected value $1.
Because f is nonnegative, I am risking only this initial $1.

Given the outcome Y =y, my payoft f(y) is my betting score
the factor by which I multiplied the money I risked.

A large betting score f(y) is the best evidence I could have against P.

I bet against P and won.

But the possibility that I was merely lucky remains in view.
There is no better way to communicate the remaining uncertainty.

The amount | risk is so small that | do not care about losing it.

No decision theory here. No utility. No Bayesian reasoning.

Notation introduced by Markov in 1900:

e Y is an unknown quantity.
e y is a particular value for Y.




Conventional concept Conventional explanation Betting interpretation

(2(observation)

likelihood ratio Betting score

P(observation)

likelihood ratio = betting score

e | buy a nonnegative f with expected value 1 with respect to P.

e So )  f(y)P(y) =1
e So () is a probability distribution, where Q(y) := f(y)P(y).

e So the betting score f(y) is equal to the likelihood ratio ggy;.

Your bet defines an alternative hypothesis ().



likelihood ratio = betting score

e | buy a nonnegative f with expected value 1 with respect to P.

e S0 Z fly)P(y) = 1.
e So () is a probability distribution, where Q(y) := f(y)P(y).

e So the betting score f(y) is equal to the likelihood ratio g%yg.

Your bet defines an alternative hypothesis ().

By Gibb’s inequality, Q(Y)/P(Y) is optimal for testing
P against (), 1n the sense that

EQ (111 Q(Y)> > EQ (111 R(Y)> The logarithm is pertinent because scores from

P(Y) P(Y) successive tests multiply. Logarithmic loss is used
in information theory and machine learning for

for any other probability distribution R. similar reasons.
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Conventional concept Conventional explanation Betting interpretation

((observation)

likelihood ratio Betting score

P(observation)

Probability, given P is true,
that test will err by reject-
ing it by chance

Inverse of betting score for a
winning all-or-nothing bet

significance level:
a = P(test rejects P)

The significance level a 1in betting language

e Following the Neyman-Pearson theory, I choose E such that P(E) = a
and reject if £ happens.

e To explain this in betting language, I bet a that E will happen:
I pay Sa and get back $1 if ¥ happens and $0 if it does not.

e Or I pay $1 and get back $(1/«) if E' happens and $0 if it does not:

L ifyeF
flyy =45 .-
0 ifyé&kFE.

e This all-or-nothing bet f is usually not optimal, because the probability
distribution f x P is usually not the most plausible alternative hypothesis.

11



Conventional concept Conventional explanation Betting interpretation

Probability, given P is true,
that test will err by reject-
ing it by chance

Inverse of betting score for a
winning all-or-nothing bet

significance level:
a = P(test rejects P)

power When power is small, When power is small,
= Q(test rejects P) test can reject betting score can be large
only by chance. only by chance.

Power is usually ignored in social science!

A test that is not powerful: Test whether a Thinking about power is too hard for practition-
coin is fair by flipping it 100 times. ers and goes against their desire to publish.

; . e T e IR S I ¢ . o
Let Y be the number of heads. Its variance is 5. Betting language makes the possibility of “just
You reject at 5% if |Y — 50| is greater than two luck” harder to ignore.

standard deviations—i.e.. Y <40 or Y > 60. o o
The likelihood ratio is

If Y = 61, you reject. But this rejection is just =061 4839
luck if the alternative gives heads probability 0.52, — o = 2.2
— ; L)0

because then the power is only about 6%. :
‘ I . | You multiply your money by 2.2, not by 20.

12



Conventional concept Conventional explanation Betting interpretation

p-value = P(T' > t). Probability, if P is true, of Inverse of betting score for
T is test statistic: getting a result as extreme an all-or-nothing bet that
t is its observed value. as the one observed.

cheats \

Betting on a p-value A p-value always cheats.

The p-value from a test statistic 7°(Y) is You cannot bet on T'(Y') > T'(y)

before you know y.
ply) = P(T(Y) = T(y)).

To bet on the p-value being small, buy a payoft

1
f(p(Y)) with expected value 1 or less under P. p-value e f(p-value)
My favorite, easy to remember and calculate, is 0.10 10 0
0.05 20 8.9
2 : ]_ ¢
L ifp<d 0.01 | 100 20
fp) = [‘f R 0.005 | 200 28
OVHETIVISE. 0.001 | 1000 63

E(f(p(Y))) <1 because P(p(Y) <p) <p. 3




The strategy of betting
as a strategy for scientific communication

Point 1. The conventional vocadfulary for statistical testing is too
complicated for scientific co unication. We can communicate
statistical results better using the language of betting.

Point 2. We can communicate even better using fully defined
betting games.

Point 3. We can also avoid the fantasy of many worlds.
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Point 2

We can communicate even better using
fully defined betting games.



Probability theory using betting games

Protocol for tossing fair coin: . L o |
- e Perfect-information: plavers see each

Ko = 1 ) others” moves as they are made.
FOR1 n :+1‘- 2,..., 100: | e K is Skeptic’s capital.
BkC’pF'IC announces M, € R e y = 1 means heads; y = 0 means tails.
Reality announces y,, € {i[]? 1}. e When M > 0, Skeptic is betting on heads.
Kni=Kn-1+Mn(yn —3)- ¢ When M < 0, Skeptic is betting on tails.
Define a law-of-large-numbers game
by giving a rule for who wins:
Skeptic wins if all IC,, > 0 and either Skeptic has a winning strategy in this game!

K:lmj E 20 or
100 — 3| <0.1.
Otherwise Reality wins.

How a probability distribution represents How a protocol represents a phenomenon:

a phenomenon: An event of small probability, An event that allows Skeptic to multiply capital

U100 — %’ < (.1, will not happen. he risks by a large factor, such as {7;99 — %’ < 0.1.
will not happen.

such as

16



Statistics using betting games is a little more complicated.

We can communicate even better using fully defined betting games.
1. The game may be partly hidden from the statistician.

e R. A. Fisher assumed only partial knowledge of the prob-
abilities describing a phenomenon. The statistician knows
only that the true distribution is in a known class (Fp)gco.

e Similarly, game-theoretic statistics assumes that the statis-
tician sees only some of the moves in a betting game.

2. Betting offers may fall short of a probability distribution.

e A probability distribution for Y prices every payoft f(Y').

e Some betting games give fewer prices.

17



Protocol where betting offers fall short of a probability distribution.

K:.[] = 1.

FORn=1,2,...,. 100:
Skeptic announces M,, € R.
Reality announces ¢, € [—1, 1].

K, =K, 1+ M,e,.

Think of Reality’s moves as errors of
measurement.

In 1821, Gauss assumed that:

 errors are bounded between certain
limits, and

* errors that are equal but of opposite
signs are equally likely.

e On the nth round, Skeptic can buy €, In any amount
(positive, negative, or zero) at the price 0.

e The values of previous € do not matter.

18




Protocol where betting offers fall short of a probability distribution.
]C(] = 1.
FORn=1,2,...,100:
Skeptic announces M,, € R.

Reality announces €, € [—1,1].
an L= ]Cn—l + A'J?I,en'

Make this protocol a game by giving a rule for who wins.

Skeptlc Wins lf ]Cl ]Cloo > O and This follows from the game-theoretic

form of Hoeffding’s inequality; see

- = Section 3.3 of Game-Theoretic
et her K1 00 2 20 Or ‘ €100 ‘ é O .2 72 : Foundations for Probability and
Finance.

Skeptic has a winning strategy in this game.

So statistician can bet 19 to 1 that [€199| < 0.272.

19



)]CD = 1.

FOR n=1.2,...,100:
Skeptic announces M,, € R.
Reality announces €, € [—1,1].

K, =K,_1+ M,e,.

Skeptic wins if 1, ..., K00 = 0 and
either K100 > 20 or ‘EIOO‘ < 0.272.

)CD = 1.
Now add a and €4, .. .. €100 to the protocol. Reality announces o € RX |
FOR n=1.2.....100:
It remains a perfect-information protocol: Skeptic announces M,, € R.
Both Reality and Skeptic see av and the ¢,. Reality announces €, € [—1,1] and sets vy, := a + €,.

K, =K,_1+ M,e,.

The statistician stands outside the protocol. She sees the z,, and the v,
but she does see « or the ¢,,.

Skeptic’s 19 to 1 bet that [€100] < 0.272 is now a 19 to 1 bet that
100 — af < 0.272.

The statistician can share Skeptic’s confidence in the 19 to 1 bet that « is
in the interval 7,49 £ 0.272. 20



The argument generalizes to least squares estimation.

K;D = 1.
Reality announces 3 € RE.

FOR n=1,2....,100: dot product

Reality announces r,, € R,
Skeptic announces M,, € R.

Reality announces ¢, € [—1, 1] and sets y,, := (3, 2,) + €,.

K:n. = K:-n—l - ﬂirn.‘fn.-

See Game-Theoretic Foundations for Probability and Finance:

e Section 10.4 discusses consistency for least square estimates
for bounded errors, in the spirit of Lai and Wei (1982).

* Chapter 4 shows how the absolute bound on errors can be
replaced by a quadratic hedge.

21



The games scientists play:

* p-hacking: screening ideas, screening drugs
* multiple testing

* meta-analysis

* the crisis of replication

These issues are not new.
* Fourier published a table of significance levels in 1821.
* Cournot discussed the pitfalls of multiple testing in 1843.

The betting language puts them on the table at the outset.

What game is your laboratory or research group playing? When you reject H, at the 5%
level, did you risk just one dollar to win 20? Or did you already lose money on other
tests or other experiments or other variables before you found a winner? You can
claim credit only for the factor by which you multiplied all the money you risked.

What game is the scientific community playing? A meta-analysis must ask whether the
second experiment was undertaken only because the first was promising.

22



The language of betting
as a strategy for scientific communication

Point 1. The conventional vocadfulary for statistical testing is too
complicated for scientific co unication. We can communicate
statistical results better using the language of betting.

Point 2. We can communi ven better using fully defined

betting games.

Point 3. We can also avoid the fantasy of many worlds.

23



Point 3

We can also avoid the fantasy of many
worlds.



Any probability distribution can be interpreted

’rotocol for tossing fair coin: Define a law-of-large-numbers game this way.
Ko = 1. by giving a rule for who wins:
FORn=1,2,..., 100: Skeptic wins if all IC,, > 0 and either ~ The approximation of probability by frequency
Skeptic announces M,, € R. K100 > 20 or is only one theorem.
Reality announces v,, € {0,1}. }ﬁlot} — %‘ < 0.1. S o .
Ky =Kn_1+ My (yn — %) Otherwise Reality wins. Basic principle is that Skeptic will not multiply

the capital he risks by a large factor.

Protocol for probability forecasting: . .,
Define a law-of-large-numbers game

Probabilities may ;CF)[T i: 19 100: by giving a rule for who wins:

change on every round. Reality announces signal, . Skeptic wins if all ,, > 0 and either
Forecaster or theory announces p € [01]. K100 > 20 or

You still have theorems Skeptic announces M,, € R. T100 — P1ool < 0.1

about frequencies. Reality announces y,, € {0, 1}. Otherwise Reality wins.

K:n- L= K:-n—l + ﬂfn-(yn — f-:'-n,y

A physicist using probability in statistical mechanics, quantum mechanics, or cosmology is in the
same position as a statistician using probability in medicine or social science.
1. She does not see all the moves in the game.
2. Probability theory does not force her to suppose that the first move is repeated endlessly.
25



Game-theoretic probability as a strategy for scientific communication

1. The conventional vocabulary for statistical testing (likelihood, significance level, power, p-value, etc.) is too
complicated for scientific communication. It is easier to communicate statistical results in terms of betting. A
likelihood ratio, for example, is the amount we multiply the capital we risk when we bet against one probabilistic
theory using an alternative.

2. We can communicate even better by using fully defined betting games. Betting offers describe a phenomenon if a
player cannot use them to multiply the capital he risks by a large factor. Just as R. A. Fisher's theory of statistics begins
by supposing that the statistician has only partial knowledge of the probabilities describing a phenomenon, game-
theoretic statistics begins by supposing that the statistician sees only some of the moves in the betting game.

3. The offers in a betting game need not include odds on every event or prices for every payoff. This saves game-
theoretic probability from the many-world fantasies that we find in some probabilistic treatments of statistical
mechanics, quantum mechanics, and cosmology.
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http://www.probabilityandfinance.com/

Game-theoretic probability and finance
come of age

Glenn Shafer and Viadimir Vovk's Probability and Finance, publishaed in 2001, showed
that perfect-information games can be used to define mathematical probability. Based
on fifteen years of further research, Game-Theorstic Foundations for Probability
and Finance presents a mature view of the foundational role game theory can play.
Its account of probability theory opens the way to new methods of prediction and
testing and makes many statistical methods more transparent and widely usable.
Its contributions to finance theory include purely game-theoretic accounts of lto's
stochastic calculus, the capital asset pricing model, the equity premium, and
portfolio theory.

Game-Theorstic Foundations for Probability and Finance is a book of research. It
is also a teaching resource. Each chapter is supplemented with carefully designed
exercises and notes relating the new theory to its historical context.

Praise from early readers

“Ever since Kolmogorov's Grundbegriffe, the standard mathematical treatment of
probability theory has been measure-theoretic. In this ground-breaking work, Shafer
and Vovk give a game-theoretic foundation instead. While being just as rigorous,
the game-theoretic approach allows for vast and useful generalizations of classical
measure-theoretic results, while also giving rise to new, radical ideas for prediction,
statistics and mathematical finance without stochastic assumptions. The authors set
out their theory in great detail, resulting in what is definitely one of the most important
books on the foundations of probability to have appeared n the last few decades.”
—Peter Grunwald, CWI and University of Leiden

*Shafer and Vovk have thoroughly re-written their 2001 book on the game-theoratic
foundations for probability and for finance. They have included an account of the
tremendous growth that has occurred since, in the game-theoretic and pathwise
approaches to stochastic analysis and in their applications to continuous-time finance.
This new book will undoubtedly spur a better understanding of the foundations of these
very important fields, and we should all be grateful to its authors.”

—loannis Karatzas, Columbia University

Glenn Shafer is University Professor at Rutgers University.

Viadimir Vovk is Professor in the Department of Computer Science at Royal
Holloway, University of London. They are the authors of Probability and Finance: it's
Oniy & Game, published by Wiley and co-authors of Algonthmic Learning in 8 Random
World. Shafer’s other previous books include A Mathematical Theory of Evidence and
The Art of Causal Conjecture.
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Ever since Kolmogorov's Grundbegriffe, the standard mathematical
treatment of probability theory has been measure-theoretic. In this ground-
breaking work, Shafer and Vovk give a game-theoretic foundation instead.
While being just as rigorous, the game-theoretic approach allows for vast
and useful generalizations of classical measure-theoretic results, while also
giving rise to new, radical ideas for prediction, statistics and mathematical
finance without stochastic assumptions. The authors set out their theory in
great detail, resulting in what is definitely one of the most important books
on the foundations of probability to have appeared in the last few decades.
— Peter Grunwald, CWI and University of Leiden

Shafer and Vovk have thoroughly re-written their 2001 book on the game-
theoretic foundations for probability and for finance. They have included an
account of the tremendous growth that has occurred since, in the game-
theoretic and pathwise approaches to stochastic analysis and in their
applications to continuous-time finance. This new book will undoubtedly
spur a better understanding of the foundations of these very important
fields, and we should all be grateful to its authors.

— loannis Karatzas, Columbia University 28



