Solutions to the Attendance Quiz Lecture 18

1. Find the general expression, in polar coordinates, for the steady-state temperature $u(r, \theta)$ in a circular plate of radius 2, if the temperature on the circumference r = 2 is given by $u(2, \theta) = \sin \theta$.

Sol. Remember that when $u(c,\theta)$ is a **pure** sine-wave of the form $C \sin n\theta$ for some **integer** n, then the answer is simply $C(r/c)^n \sin n\theta$.

In this problem c = 2 (C = 1) and n = 1 so $u(r, \theta) = (r/2)^1 \sin \theta = (r/2) \sin \theta$

Ans. to 1: $u(r, \theta) = \frac{r \sin \theta}{2}$.

Comments: 1. Almost everyone got it right. A few people went further and "simplified" the answer to $(2/2) \sin \theta = \sin \theta$. This is **wrong**! c = 2 but r is not 2, r is a variable!

2. If $u(c, \theta)$ is a finite combination of pure sine and/or pure cosine waves, you do the same to each term individually.

For example, if $u(2, \theta) = 3\sin 2\theta - 5\sin 4\theta + 7\cos 2\theta$, the answer would be

$$u(r,\theta) = 3(r/2)^2 \sin 2\theta - 5(r/2)^4 \sin 4\theta + 7(r/2)^2 \cos 2\theta \quad .$$

3. If $u(r, \theta)$ is an **infinite** combination of pure sine and pure cosine waves, then you still do the **same thing**. Alas, in this case there is a preliminary step of expressing the given function as a combination of pure sine and pure cosines waves (also known as finding the full Fourier Series on $(-\pi, \pi)$), and then doing the above process of sticking $(r/c)^n$ in front of $\sin n\theta$ and $\cos n\theta$ (if applicable).