Solutions to the Attendance Quiz for Lecture 16

1. Solve the boundary value problem
Uge = Ut , O<z<m , t>0 ;

w(0,t) =0 , w(mt)=0 , t>0 ;

u(z,0)=3 |, w(z,0)=4 |, O0<z<m

Sol.

(Note: the most straightforward way is just to plug-in into the formula in the cheatsheet, below I
present a slightly more conceptual approach, that is in tune with the “short cut” that I presented

for the special case where u(x,0) is a pure sine function or a combination thereof)

First note that in this problem a = 1. We first find the Fourier Sine Expansion of the function 1
over [0, 7]. By the general formula
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Since f(x) =1, we have
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So immediately we get the Fourier Sine expansions of u(z,0) = 3 and u(z,0) = 4.
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The contribution to u(x, t) arising from u(z,0) is gotten by simply copying-and-pasting the Fourier
Sine expression above for u(z,0) = 3 and sticking cos nat inside the summand, getting (since a = 1)
that the contribution due to u(z,0) is:
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The contribution to u(x,t) arising from wu(z, 0) is gotten by simply copying-and-pasting the Fourier
sin nat

4% inside the summand, getting (since a = 1)

Sine expression above for us(z,0) = 4 and sticking
that the contribution due to u(z,0) is:
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Finally, adding these two contributions yields the answer:
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This would give you full credit. But since (1 — (—1)") = 0 when n is an even integer and it equals
2 when n is an odd integer, we can write n = 2k + 1 and get an even better answer:
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