Solutions to MATH 421 (2), Dr. Z.’s , Exam 2, Tue. Nov. 26. 2024 10:20-
11:40am, SEC 117

1. (15 pts.) Solve (from scratch!) the boundary value problem

“3u=2Y 0<z<m , t>0 |,

subject to

uz(0,8) =0 , wugy(mt)=0 ,t>0

u(z,0) =cos9z , O<z<m

Ans.: u(x,t) = cos(9z)e 84

Sol.: We first look for product solutions of the template
u(z,t) = X (2)T(t)

Putting into the pde, we get
X"T —3XT = XT'

Dividing by XT"
X'"T-3XT XT'

XT XT
Algebra:

X// T/

R QU

X T

Moving the 3 to the right (for convenience)

X"(x) T'(t)
X(z) T(t)

As usual, the left side does not depend on ¢, the right side does not depend on x, and they
are equal, so both of them do not depend on z or ¢t. In other words, they are both equal
to a constant.

Unfortunately, that constant could be either positive, zero, or negative, so officially, we
have to consider these three cases. But if the constant is positive, let’s call it A2, then
the general solution of X” /X = A\? is ¢; cosh(A\x) + co sinh(Az) and this can never make



the boundary condition u,(0,t) = 0, u,(m,t) = 0 be satisfied. If the constant is zero, then
X (z) = ¢1 is a possibility. If the constant is negative then we have to solve the two odes

X"/X ==\
T'(t) 2
3 = -
T

Rewriting: X" + A\2X =0 , whose general solution is

X(z) = c¢1cos(Ax) + cosin(Az)

T'(t)

Rewriting the second equation as: T = —A? — 3 and again as

T't) + (N +3)Tt) =0

whose general solution is
T(t) _ 638—(A2—|—3)t

So the product solution is:
u(x,t) = (e1 cos(Ax)+co Sin()\x))03e_(>‘2+3)t =C4 COS()\I‘)G_(A2+3)t+CQ sin()\x)e_(V*’S)t
We found two infinite families of product solutions
- —(A243)t o —(A243)t
u(z,t) = cos(Az)e ,  u(x,t) =sin(Ax)e ,

Now it is time to look at the boundary condition w,(0,t) = 0. For the second family,
u(z,t) = sin()\a:)e_()‘2+3)t,

Ug(x,t) = )\cos()\a:)e_(A2+3)t )

So
uﬂ?(ovt) = )‘COS()‘ ) 0)67(>\2+3)t = COS(O)ef(’\2+3)t = e*(A2+3)t )

that is never zero, so this family is out 02f the question!
For the first family, u(x,t) = cos(A\z)e~ A +3)t,
Ug(z,t) = —A sin()\x)e_(vﬁ)t ,
So 2
Uy (0,1) = —Asin(A - 0)e~ M+t =

So this family is OK! So far, A can be any real number. Now it is time to look at the
second boundary condition:
Uz (m,t) =0



Getting ‘ s
Uy (m,t) = —Asin(A - m)e =0

Since e~ *+3)t is not the zero function, we need
sin(A-m)=0

so we have to solve this trig. eq. Recall that the general solution of sinw = 0is w = n7w
(n integer). So our A must satisfy the relation

AT =nm

Solving for A\ we get A = n (n integer), so our previously infinite family of “building blocks”
is still infinite, but much more restricted

Up(z,t) = cos(nx)e_(”Q’L?’)t n=0,1,2,3,....

By the principle of superposition the following is the general solution of the pde plus
the two boundary conditions

u(z,t) = Z A, cos(n.r)e_(”2+3)t ,

n=0

for any numbers Ag, A1, As,.... Now it is time to look at the initial condition u(x,0) =

f(z),
u(z,0) = Z A, cos(nx)e_("2+3)'0 = Z A, cos(nx)
n=0 n=0

But that’s an old friend! It is the Fourier cosine half-range expansion of f(x). But in this
problem f(x) = cos9z, its Fourier-cosine expansion is ITSELF!, so A9 = 1 and all the
other A, ’s are zero, and to get to u(x,t) we simply stick-in e~ (W43t with n = 9 in front
of it!, in other words, e~84. So the final answer is simply u(z,t) = (cos 9x)e 3.

Comments: This was probably the hardest problem! Some people confused it with the
Heat Equation, and blindly used the canned formula for the Heat Equation. Wrong! This
pde is similar to the Heat Equation, but not the same, so the canned formula is, of course,
not applicable!



2. (15 points) Find the eigenvalues \,,, and the corresponding eigenfunctions y,,(x) for the
following boundary value problem.

y' 4+ y=0 , y0)=0 , y42)=0

Ans.: \, = 35 ; Yn(x) = sin(%x)

Sol. The general solution of the ode is:
y(xz) = ¢1 cos(Ax) + co sin(Ax)
Plugging-in x = 0, gives
y(0) = c1 cos(A-0) 4+ casin(A-0) = ¢;
Since we are told that y(0) = 0, we get ¢; = 0, and the general solution shrinks to:
y(x) = cosin(Az)

Now we plug-in x = 42:
y(42) = co sin(A\42)

Since we don’t want cs to be 0, we need
sin(A\42)

so we have to solve this trig. equation. Recall that the solution of sinw = 0 is w = nw (n
integer), so setting the inside of sin(A42), namely A\42 equal to nm, we have to solve for A:

M2 =nm
Dividing by 42 gives
A="7 (n integer)
12 g

These are the eigenvalues, let’s call them A, = ZZ. To get the corresponding eigen-

functions we simply plug-in A = %7 into

y(z) =sin(Az)

getting
Y s
yn(z) = Sm(Ex)

Comment: Some people had the answer
nmw
A=—
42
While this is, strictly speaking correct, it is expected to plug-in the correct A into y(z) as
I did above.

yn(z) = sin(Ax)



3. (15 points) Solve the pde
Qe =ur ,0<z<m , t>0 |,
subject to the boundary-conditions
u(0,t)=0 , wu(mt)=0 , t>0 |,
and the initial conditions

u(z,0) =0 , wuz,0)=1lsinz —120sindbz , O0<z <7

Ans.: u(z,t) = 4 sinzsin 3¢ — 8sin 5 sin 15¢

Sol. This is the wave equation with a = 3.

It is a piece of case if you use Dr. Z.’s amazing shortcut. Since both u(z,0) (that happens
to be 0 in this problem, and wu:(z,0) are already in Fourier-Sine expansion, leave them
alone, and to get u(z,t) change each sinnz in the u(z,0) = f(z) part into sin nz cos(nat)
(not applicable in this problem, since the f(z) in the initial condition u(z,0) = f(z)
happens to be the zero function in this problem, and change each sinnx in g(z) featuring
in the initial condition u;(x,0) = g(x) into sinnx sin(nat)/(na).

For the 1lsinz piece, n = 1 so we multiply it by sin(1 - 3t)/3 = sin(3t)/3. For the
—120sinbx piece, n = 5 so we multiply it by sin(5 - 3 - ¢)/15 = sin(5t)/15, getting
—120sin b5z sin(5t)/15 . So the answer is

11 in5esinlst 11
u(e,t) = — sinsin3t - 120% = - sinasin3t — 15sin 5asin 15¢



4. (15 points) Find the half-range sine expansion of f(z) = 3 on (0, 37).

o (241
Ans.: %ZZO:O 21<;1+1 sm(( : )x)

1—(=1)" . :
Note:: £3°> (n ) sin(4) is also an acceptable answer.

Sol. Since the interval is (0,37) that is not the “nice” interval (0,7) (i.e. L = 3m) we
must first consider a brand-new function g(z) whose natural habitat is (0, 7) defined by:

o(0) = f(Za)

7r
the idea being that g(7) = f(L). Here L = 37, so

3

9(x) = f(—=x) = f(3z)

™

For future reference, once we would have the half-range sine expansion of g(z), we will get
back to f(x) by

In this problem f(z) = 3 so g(z) = 3 (NOT 9!, like many people did). To get from f(x)
to g(z) you replace x by 3z, but f(x) is a constant function!, it has no z in it, so there
is nothing to do and g(x) = 3 also!

Now we can use the canned formula for the Fourier sine expansion

o0
g(z) = Z by sinnx
n=1

where the coefficients, b,,, are given by the integral formula

2 ™
by, = —/ g(z) sinnz dz
0

™

In this problem, g(z) = 3 so

2 s s _
bn:—/ 3Sinnacdx:§/ Simnxdng(M
0 0 m

™ s n

)



= —%(cos(mr) —cos0) = —E((—l)” —-1) = %(1 — (=™

So
— 6
Z—l— —1)")sinnz
— nmw

Taking out the constant £ out of the > (WARNING: SOME STUDENTS ALSO TAKE
n stuff out! WRONG WRONG WRONG, this is NONSENSE!), we get

Finally, going back to f(z), using f(z) = g(z/3) we get
b= 1—(-1)" . nzx
flz) = - z_:l sin

This is correct and acceptable. To get an even better answer, note that when n is an even
integer n = 2,4,6, etc. 1 —(—1)" is always 0 so it is not necessary to include them. When
n is an odd integer n = 1, 3,5, etc. 1 — (—1)" is always 2. So writing a typical odd integer
as n = 2k + 1 (but k now starts at 0), we can rewrite the above correct answer, even more
efficiently, as:

12 1 (2k+ Dz
fla)=— Z2/<:+1 u 3)



5. (15 points altogether )
(a) (8 points) Show that the following set of two functions, over the given interval and
weight function, is an orthogonal set.

{fl(x):L f2($):10$—8} [071] s w(ac):$3
(b) (7 points) Using orthogonality (no credit for other methods!) find numbers c1, ¢2
such that

10z = c1 f1(x) + cafa(x)

Ans. tob): ;=8 , cc=1.

Sol. of a:

1 1 1
(f1(x), fo(2))w :/0 f1(x) fo(x)2 da =:/0 1(10z — 8)z3 dx :/0 (102 — 823) dx

z° ANk 5 NE
= (10% = 87| = (22° —22%)| =0-0=0
3

So fi(z) and fy(z) are indeed orthogonal with respect to the weight function w(x) = z°.
Sol. o b:
(f(x)vfl(x))w (10.%,1)2 (f(.f),fg(l‘))w (10377 10x _8)x3

01: = 5 C2: =

(fr(2), fr(@))w (1, 1)as (f2(2), f2(2))w (102 — 8,107 — 8))qs

Let’s do ¢; first: The numerator is:

1

(), f1(2))as = /0 (10z)(1)2® dz = /O 102 dz = 2x5‘ = 2(15 — 0°) = 2

0

The denominator is:

(1, 1)y = / (1)(1)(z?) da =

So



Regarding cs, the numerator is
1
(10,102 — 8) 43 = / (10x)(10z — 8)2> dx
0
while the denominator is

1 1 1
(102—8,102—8),5 = / (100—8)%2% dx = / (10022 —~160x+64)x> dr = / (1002° —160z* +642°) dx
0 0 0

1 2
= (1002°/6 — 1602° /5 + 64:1:4/4)‘0: (50/3 — 324 16) = (50/3 — 16) = 3

So

_ 28 _

2T 937"



6. (15 points) Solve :
Ugg T Uyy =0 , O<oz<7m , O<y<l |

Subject to
uz(0,9) =0, up(my)=0 , O0<y<1l ;

uy(z,0) =0 , wu(z,1)= (cosh4)cosdz+(cosh7)cos7z+(cosh10)cos10x , O0<z<m

Ans.: u(z,y) = cosdx cosh 4y + cos Tz cosh Ty + cos 10z cosh 10y

Sol. There are eight infinite families of product solutions of the 2D Laplace equation.
The four most common ones are

(1) wu(x,y) = cos Az cosh \y

(7) wu(x,y) = cos Az sinh \y

(731)  wu(x,y) = sin Ax cosh Ay

(iv)  u(z,y) = sin Az sinh \y
and the four other ones

(v) wu(z,y) =coshAxcosAy , (vi) wu(x,y)=coshAxrsinly ,

(vit) w(x,y) =sinhAzcosAy , (viii) wu(z,y) = sinh Az sin\y

Now it is time to eliminate most of these options, using the conditions u,(0,y) = 0,
uy(x,0) =0.
For (i): u(z,y) = cos Az cosh \y

uzp(x,y) = —AsinAzcosh Ay , wuy(z,y) = AcosAxsinh Ay

So uz(0,y) = 0 and uy(z,0) =0 so (i) is still OK!
For (ii): u(z,y) = cos Az sinh Ay
ugp(z,y) = —Asin Azsinh Ay,  wuy(z,y) = Acos Az cosh Ay

Y

So uz(0,y) = 0 (ok) and uy(x,0) = Acos Az (not ok!) so (ii) is OUT!



For (iii): u(x,y) = sin Az cosh Ay
ug(z,y) = AcosAzcosh Ay ,  wuy(z,y) = AsinAxcoshy

So u,(0,y) # 0 (not ok) so (iii) is OUT!
For (iv): u(x,y) = sin Az sinh Ay

ugz(x,y) = Acos Axsin Ay

So u(0,y) # 0 (not ok) so (iv) is OUT!
Similarly, (vi),(vii), and (viii) are eliminated.
The only the infinite families that are still options are

cos Arcosh Ay , coshAxcos\y
Now we use u,(m,y) = 0. With
u(x,y) = cos Ax cosh \y

we have
Ug(z,y) = —Asin Az cosh \y |

Plugging-in x = 7 gives
Uy (m,y) = —Asin(Ar) cosh Ay

Setting this equal to 0 yields the trig. equation
—Asin(Am) cosh Ay = 0
which is the same as
sin(Ar) =0

The solution is A = nm (n integer) giving A = n, n integer.
For the other option
u(x,y) = cosh Az cos \y

we would get
sinh(A7) =0

that has no solutions, so we can forget about this option. (Note, people who did not
consider this option did not get penalized!)
So the building block solutions for the pde plus the first three boundary conditions are

un(2,y) = cos nx cosh ny

By the principle of superposition any linear combination, finite or infinite

o0
u(x,y) = Z A, cosnz coshny

n=1



for any numbers Ay, As, A3 ... is yet another solution. It is time to impose the last bound-
ary condition u(x,1) = f(z) for

f(x) = (cosh4) cos4x + (cosh 7) cos 7z + (cosh 10) cos 10z , O0<zx <7

Plugging y = 1 into the general u(z,y) above gives:

o
E A,, cos nz(coshn) E (A,, coshn) cosnz

n=1

This rings a bell! It is the Fourier-cosine expansion of f(z). But our f(z) is already in
that form

f(z) = (cosh4) cos4x + (cosh 7) cos 7Tz + (cosh 10) cos 10z, O0<z <
Comparing coefficients
Agcosh4d =cosh4 , Azcosh7=cosh7 , Ajgcosh7 = coshl10
and all the other A,,’s are zero. So
Ay=1 A7;=1 Ap=1 |,
and all the remaining ones are 0, and going back to u(z,y) we have

u(x,y) = cos4x cosh 4y + cos 7z cosh Ty + cos 10z cosh 10y



7. (10 points) Find product solutions, if possible, to the partial differential equation

ou_ou_,
or oy

Ans.: u(z,y) = e"e5Y or u(z,y) = " T5Y or u(z,y) = eFG=TY)  (where k is any real
number.

Sol. We first, write the template

Since

Plugging it into the pde gives:
XY -5XY' =

As usual, dividing by XY
X'Y -5XY

XY
Algebra:
X'y 5XY' 0
Xy Xy
More algebra:
X' 5y 0
X Yy

Moving the Y (y) stuff to the right, and going back to longhand

X'(z) _ 5Y'(y)
X(z)  Y(y)

The left side only depends on z, the right side only depends on ¥, so the left side does
not depend on y, the right side does not depend on z, but they are equal!. So neither
side depends on x and neither side depends on y, so both sides are just a constant! Let’s
call that constant k, and we have now two odes:




In standard form:
X’(:r:) —kX(x)=0

Y'(y) = (k/5)X(y) =0
From calc4, the general solutions are
X(z) = cref® |

Y (y) = coek/?Y

Going back to the template, we have
u(z,y) = 0102ekfe(k/5)y — Cekrek/5)y

(c1,co are arbitrary constants, so we can rename cjcp as C, yet-another arbitrary constant.
Since the equation is homogeneous, we get just put C' = 1, and not mention it, since
u(z,y) = eF*e(F/5)Y being a solution automatically implies that u(z,y) = CeF*e(F/5)Y is a
solution for any C, so it customary not to write the C' (in other words, take C' = 1), but
it is not a mistake to leave the answer as CeF®e(*/5)Y (C' and k any numbers).



