
Solutions to MATH 421 (2), Dr. Z.’s , Exam 2, Tue. Nov. 26. 2024 10:20-
11:40am, SEC 117

1. (15 pts.) Solve (from scratch!) the boundary value problem

∂2u

∂x2
− 3u =

∂u

∂t
, 0 < x < π , t > 0 ,

subject to
ux(0, t) = 0 , ux(π, t) = 0 , t > 0

u(x, 0) = cos 9x , 0 < x < π .

Ans.: u(x, t) = cos(9x)e−84t

Sol.: We first look for product solutions of the template

u(x, t) = X(x)T (t) .

Putting into the pde, we get
X ′′T − 3XT = XT ′ .

Dividing by XT :
X ′′T − 3XT

XT
=
XT ′

XT
.

Algebra:
X ′′

X
− 3 =

T ′

T
.

Moving the 3 to the right (for convenience)

X ′′(x)

X(x)
= 3 +

T ′(t)

T (t)
.

As usual, the left side does not depend on t, the right side does not depend on x, and they
are equal, so both of them do not depend on x or t. In other words, they are both equal
to a constant.
Unfortunately, that constant could be either positive, zero, or negative, so officially, we
have to consider these three cases. But if the constant is positive, let’s call it λ2, then
the general solution of X ′′/X = λ2 is c1 cosh(λx) + c2 sinh(λx) and this can never make



the boundary condition ux(0, t) = 0, ux(π, t) = 0 be satisfied. If the constant is zero, then
X(x) = c1 is a possibility. If the constant is negative then we have to solve the two odes

X ′′/X = −λ2

3 +
T ′(t)

T (t)
= −λ2

Rewriting: X ′′ + λ2X = 0 , whose general solution is

X(x) = c1 cos(λx) + c2 sin(λx) ,

Rewriting the second equation as: T ′(t)
T (t) = −λ2 − 3 and again as

T ′(t) + (λ2 + 3)T (t) = 0 ,

whose general solution is

T (t) = c3e
−(λ2+3)t .

So the product solution is:

u(x, t) = (c1 cos(λx)+c2 sin(λx))c3e
−(λ2+3)t = C1 cos(λx)e−(λ

2+3)t+C2 sin(λx)e−(λ
2+3)t .

We found two infinite families of product solutions

u(x, t) = cos(λx)e−(λ
2+3)t , u(x, t) = sin(λx)e−(λ

2+3)t , .

Now it is time to look at the boundary condition ux(0, t) = 0. For the second family,

u(x, t) = sin(λx)e−(λ
2+3)t,

ux(x, t) = λ cos(λx)e−(λ
2+3)t , .

So
ux(0, t) = λ cos(λ · 0)e−(λ

2+3)t = cos(0)e−(λ
2+3)t = e−(λ

2+3)t ,

that is never zero, so this family is out of the question!
For the first family, u(x, t) = cos(λx)e−(λ

2+3)t,

ux(x, t) = −λ sin(λx)e−(λ
2+3)t ,

So
ux(0, t) = −λ sin(λ · 0)e−(λ

2+3)t = 0 .

So this family is OK! So far, λ can be any real number. Now it is time to look at the
second boundary condition:

ux(π, t) = 0



Getting

ux(π, t) = −λ sin(λ · π)e−(λ
2+3)t = 0 .

Since e−(λ
2+3)t is not the zero function, we need

sin(λ · π) = 0 ,

so we have to solve this trig. eq. Recall that the general solution of sinw = 0 is w = nπ
(n integer). So our λ must satisfy the relation

λπ = nπ

Solving for λ we get λ = n (n integer), so our previously infinite family of “building blocks”
is still infinite, but much more restricted

un(x, t) = cos(nx)e−(n
2+3)t n = 0, 1, 2, 3, . . . .

By the principle of superposition the following is the general solution of the pde plus
the two boundary conditions

u(x, t) =
∞∑
n=0

An cos(nx)e−(n
2+3)t ,

for any numbers A0, A1, A2, . . .. Now it is time to look at the initial condition u(x, 0) =
f(x),

u(x, 0) =
∞∑
n=0

An cos(nx)e−(n
2+3)·0 =

∞∑
n=0

An cos(nx) ,

But that’s an old friend! It is the Fourier cosine half-range expansion of f(x). But in this
problem f(x) = cos 9x, its Fourier-cosine expansion is ITSELF!, so A9 = 1 and all the

other An’s are zero, and to get to u(x, t) we simply stick-in e−(n
2+3)t with n = 9 in front

of it!, in other words, e−84t. So the final answer is simply u(x, t) = (cos 9x)e−84t.

Comments: This was probably the hardest problem! Some people confused it with the
Heat Equation, and blindly used the canned formula for the Heat Equation. Wrong! This
pde is similar to the Heat Equation, but not the same, so the canned formula is, of course,
not applicable!



2. (15 points) Find the eigenvalues λn, and the corresponding eigenfunctions yn(x) for the
following boundary value problem.

y′′ + λ2y = 0 , y(0) = 0 , y(42) = 0 .

Ans.: λn = nπ
42 , yn(x) = sin(nπ42 x) .

Sol. The general solution of the ode is:

y(x) = c1 cos(λx) + c2 sin(λx) .

Plugging-in x = 0, gives

y(0) = c1 cos(λ · 0) + c2 sin(λ · 0) = c1

Since we are told that y(0) = 0, we get c1 = 0, and the general solution shrinks to:

y(x) = c2 sin(λx) .

Now we plug-in x = 42:
y(42) = c2 sin(λ42) .

Since we don’t want c2 to be 0, we need

sin(λ42) ,

so we have to solve this trig. equation. Recall that the solution of sinw = 0 is w = nπ (n
integer), so setting the inside of sin(λ42), namely λ42 equal to nπ, we have to solve for λ:

λ42 = nπ .

Dividing by 42 gives

λ =
nπ

42
(n integer) .

These are the eigenvalues, let’s call them λn = nπ
42 . To get the corresponding eigen-

functions we simply plug-in λ = nπ
42 into

y(x) = sin(λx) ,

getting

yn(x) = sin(
nπ

42
x) .

Comment: Some people had the answer

λ =
nπ

42
, yn(x) = sin(λx)

While this is, strictly speaking correct, it is expected to plug-in the correct λ into y(x) as
I did above.



3. (15 points) Solve the pde

9uxx = utt , 0 < x < π , t > 0 ,

subject to the boundary-conditions

u(0, t) = 0 , u(π, t) = 0 , t > 0 ,

and the initial conditions

u(x, 0) = 0 , ut(x, 0) = 11 sinx− 120 sin 5x , 0 < x < π .

Ans.: u(x, t) = 11
3 sinx sin 3t− 8 sin 5x sin 15t .

Sol. This is the wave equation with a = 3.
It is a piece of case if you use Dr. Z.’s amazing shortcut. Since both u(x, 0) (that happens
to be 0 in this problem, and ut(x, 0) are already in Fourier-Sine expansion, leave them
alone, and to get u(x, t) change each sinnx in the u(x, 0) = f(x) part into sinnx cos(nat)
(not applicable in this problem, since the f(x) in the initial condition u(x, 0) = f(x)
happens to be the zero function in this problem, and change each sinnx in g(x) featuring
in the initial condition ut(x, 0) = g(x) into sinnx sin(nat)/(na).
For the 11 sinx piece, n = 1 so we multiply it by sin(1 · 3t)/3 = sin(3t)/3. For the
−120 sin 5x piece, n = 5 so we multiply it by sin(5 · 3 · t)/15 = sin(5t)/15, getting
−120 sin 5x sin(5t)/15 . So the answer is

u(x, t) =
11

3
sinx sin 3t− 120

sin 5x sin 15t

8
=

11

3
sinx sin 3t− 15 sin 5x sin 15t .



4. (15 points) Find the half-range sine expansion of f(x) = 3 on (0, 3π).

Ans.: 12
π

∑∞
k=0

1
2k+1 sin( (2k+1)x

3 ) .

Note:: 6
π

∑∞
n=1

1−(−1)n
n sin(nx3 ) is also an acceptable answer.

Sol. Since the interval is (0, 3π) that is not the “nice” interval (0, π) (i.e. L = 3π) we
must first consider a brand-new function g(x) whose natural habitat is (0, π) defined by:

g(x) = f(
L

π
x)

the idea being that g(π) = f(L). Here L = 3π, so

g(x) = f(
3π

π
x) = f(3x) .

For future reference, once we would have the half-range sine expansion of g(x), we will get
back to f(x) by

f(x) = g(
x

3
) .

In this problem f(x) = 3 so g(x) = 3 (NOT 9!, like many people did). To get from f(x)
to g(x) you replace x by 3x, but f(x) is a constant function!, it has no x in it, so there
is nothing to do and g(x) = 3 also!
Now we can use the canned formula for the Fourier sine expansion

g(x) =

∞∑
n=1

bn sinnx ,

where the coefficients, bn, are given by the integral formula

bn =
2

π

∫ π

0

g(x) sinnx dx .

In this problem, g(x) = 3 so

bn =
2

π

∫ π

0

3 sinnx dx =
6

π

∫ π

0

sinnx dx =
6

π

(
− cosnx

n

∣∣∣π
0

)
=



− 6

nπ

(
cosnx

∣∣∣π
0

)
= − 6

nπ
(cos(nπ)− cos 0) = − 6

nπ
((−1)n − 1) =

6

nπ
(1− (−1)n)

So

g(x) =
∞∑
n=1

6

nπ
(1− (−1)n) sinnx

Taking out the constant 6
π out of the

∑
(WARNING: SOME STUDENTS ALSO TAKE

n stuff out! WRONG WRONG WRONG, this is NONSENSE!), we get

g(x) =
6

π

∞∑
n=1

1− (−1)n

n
sinnx .

Finally, going back to f(x), using f(x) = g(x/3) we get

f(x) =
6

π

∞∑
n=1

1− (−1)n

n
sin

nx

3
.

This is correct and acceptable. To get an even better answer, note that when n is an even
integer n = 2, 4, 6, etc. 1− (−1)n is always 0 so it is not necessary to include them. When
n is an odd integer n = 1, 3, 5, etc. 1− (−1)n is always 2. So writing a typical odd integer
as n = 2k+ 1 (but k now starts at 0), we can rewrite the above correct answer, even more
efficiently, as:

f(x) =
12

π

∞∑
k=0

1

2k + 1
sin

(2k + 1)x

3
.



5. (15 points altogether )
(a) (8 points) Show that the following set of two functions, over the given interval and
weight function, is an orthogonal set.

{ f1(x) = 1, f2(x) = 10x− 8 } [0, 1] , w(x) = x3 .

(b) (7 points) Using orthogonality (no credit for other methods!) find numbers c1, c2
such that

10x = c1f1(x) + c2f2(x) .

Ans. to b): c1 = 8 , c2 = 1 .

Sol. of a:

(f1(x), f2(x))w =

∫ 1

0

f1(x)f2(x)x3 dx ==

∫ 1

0

1(10x− 8)x3 dx =

∫ 1

0

(10x4 − 8x3) dx

= (10
x5

5
− 8

x4

4
)
∣∣∣1
0
= (2x5 − 2x4)

∣∣∣1
0
= 0− 0 = 0 .

So f1(x) and f2(x) are indeed orthogonal with respect to the weight function w(x) = x3.

Sol. o b:

c1 =
(f(x), f1(x))w
(f1(x), f1(x))w

=
(10x, 1)3x
(1, 1)x3

, c2 =
(f(x), f2(x))w
(f2(x), f2(x))w

=
(10x, 10x− 8)x3

(10x− 8, 10x− 8))x3

.

Let’s do c1 first: The numerator is:

(f(x), f1(x))x3 =

∫ 1

0

(10x)(1)x3 dx =

∫ 1

0

10x4 dx = 2x5
∣∣∣1
0
= 2(15 − 05) = 2 .

The denominator is:

(1, 1)x3 =

∫ 1

0

(1)(1)(x3) dx =
x4

4

∣∣∣1
0
=

11 − 04

4
=

1

4
.

So

c1 =
2
1
4

= 8 .



Regarding c2, the numerator is

(10x, 10x− 8)x3 =

∫ 1

0

(10x)(10x− 8)x3 dx

while the denominator is

(10x−8, 10x−8)x3 =

∫ 1

0

(10x−8)2x3 dx =

∫ 1

0

(100x2−160x+64)x3 dx =

∫ 1

0

(100x5−160x4+64x3) dx

= (100x6/6− 160x5/5 + 64x4/4)
∣∣∣1
0
= (50/3− 32 + 16) = (50/3− 16) =

2

3
.

So

c2 =
2/3

2/3
= 1 .



6. (15 points) Solve :

uxx + uyy = 0 , 0 < x < π , 0 < y < 1 ,

Subject to
ux(0, y) = 0 , ux(π, y) = 0 , 0 < y < 1 ;

uy(x, 0) = 0 , u(x, 1) = (cosh 4) cos 4x+(cosh 7) cos 7x+(cosh 10) cos 10x , 0 < x < π .

Ans.: u(x, y) = cos 4x cosh 4y + cos 7x cosh 7y + cos 10x cosh 10y

Sol. There are eight infinite families of product solutions of the 2D Laplace equation.
The four most common ones are

(i) u(x, y) = cosλx coshλy

(ii) u(x, y) = cosλx sinhλy

(iii) u(x, y) = sinλx coshλy

(iv) u(x, y) = sinλx sinhλy

and the four other ones

(v) u(x, y) = coshλx cosλy , (vi) u(x, y) = coshλx sinλy ,

(vii) u(x, y) = sinhλx cosλy , (viii) u(x, y) = sinhλx sinλy .

Now it is time to eliminate most of these options, using the conditions ux(0, y) = 0,
uy(x, 0) = 0.
For (i): u(x, y) = cosλx coshλy

ux(x, y) = −λ sinλx coshλy , uy(x, y) = λ cosλx sinhλy ,

So ux(0, y) = 0 and uy(x, 0) = 0 so (i) is still OK!
For (ii): u(x, y) = cosλx sinhλy

ux(x, y) = −λ sinλx sinhλy , uy(x, y) = λ cosλx coshλy ,

So ux(0, y) = 0 (ok) and uy(x, 0) = λ cosλx (not ok!) so (ii) is OUT!



For (iii): u(x, y) = sinλx coshλy

ux(x, y) = λ cosλx coshλy , uy(x, y) = λ sinλx coshλy ,

So ux(0, y) 6= 0 (not ok) so (iii) is OUT!
For (iv): u(x, y) = sinλx sinhλy

ux(x, y) = λ cosλx sinλy ,

So ux(0, y) 6= 0 (not ok) so (iv) is OUT!
Similarly, (vi),(vii), and (viii) are eliminated.
The only the infinite families that are still options are

cosλx coshλy , coshλx cosλy , .

Now we use ux(π, y) = 0. With

u(x, y) = cosλx coshλy ,

we have
ux(x, y) = −λ sinλx coshλy ,

Plugging-in x = π gives
ux(π, y) = −λ sin(λπ) coshλy ,

Setting this equal to 0 yields the trig. equation

−λ sin(λπ) coshλy = 0

which is the same as
sin(λπ) = 0 .

The solution is λπ = nπ (n integer) giving λ = n, n integer.
For the other option

u(x, y) = coshλx cosλy ,

we would get
sinh(λπ) = 0 .

that has no solutions, so we can forget about this option. (Note, people who did not
consider this option did not get penalized!)
So the building block solutions for the pde plus the first three boundary conditions are

un(x, y) = cosnx coshny .

By the principle of superposition any linear combination, finite or infinite

u(x, y) =
∞∑
n=1

An cosnx coshny



for any numbers A1, A2, A3 . . . is yet another solution. It is time to impose the last bound-
ary condition u(x, 1) = f(x) for

f(x) = (cosh 4) cos 4x+ (cosh 7) cos 7x+ (cosh 10) cos 10x , 0 < x < π .

Plugging y = 1 into the general u(x, y) above gives:

f(x) =
∞∑
n=1

An cosnx(coshn) =
∞∑
n=1

(An coshn) cosnx

This rings a bell! It is the Fourier-cosine expansion of f(x). But our f(x) is already in
that form

f(x) = (cosh 4) cos 4x+ (cosh 7) cos 7x+ (cosh 10) cos 10x , 0 < x < π .

Comparing coefficients

A4 cosh 4 = cosh 4 , A7 cosh 7 = cosh 7 , A10 cosh 7 = cosh 10 .

and all the other An’s are zero. So

A4 = 1 A7 = 1 A10 = 1 ,

and all the remaining ones are 0, and going back to u(x, y) we have

u(x, y) = cos 4x cosh 4y + cos 7x cosh 7y + cos 10x cosh 10y .



7. (10 points) Find product solutions, if possible, to the partial differential equation

∂u

∂x
− 5

∂u

∂y
= 0 .

Ans.: u(x, y) = ekxe
k
5 y or u(x, y) = ekx+

k
5 y or u(x, y) = ek(5x+y) . (where k is any real

number.

Sol. We first, write the template

u(x, y) = X(x)Y (y) .

Since
ux = X ′(x)Y (y) , uy = X(x)Y ′(y) .

Plugging it into the pde gives:

X ′Y − 5XY ′ = 0 .

As usual, dividing by XY :
X ′Y − 5XY ′

XY
= 0 .

Algebra:
X ′Y

XY
− 5XY ′

XY
= 0 .

More algebra:
X ′

X
− 5Y ′

Y
= 0 .

Moving the Y (y) stuff to the right, and going back to longhand

X ′(x)

X(x)
=

5Y ′(y)

Y (y)
.

The left side only depends on x, the right side only depends on y, so the left side does
not depend on y, the right side does not depend on x, but they are equal!. So neither
side depends on x and neither side depends on y, so both sides are just a constant! Let’s
call that constant k, and we have now two odes:

X ′(x)

X(x)
= k ,



5Y ′(y)

Y (y)
= k .

In standard form:
X ′(x)− kX(x) = 0 ,

Y ′(y)− (k/5)X(y) = 0

From calc4, the general solutions are

X(x) = c1e
kx ,

Y (y) = c2e
(k/5)y .

Going back to the template, we have

u(x, y) = c1c2e
kxe(k/5)y = Cekxe(k/5)y .

(c1, c2 are arbitrary constants, so we can rename c1c2 as C, yet-another arbitrary constant.
Since the equation is homogeneous, we get just put C = 1, and not mention it, since
u(x, y) = ekxe(k/5)y being a solution automatically implies that u(x, y) = Cekxe(k/5)y is a
solution for any C, so it customary not to write the C (in other words, take C = 1), but
it is not a mistake to leave the answer as Cekxe(k/5)y (C and k any numbers).


