
MATH 421 (2), Dr. Z. , Solutions to the FINAL EXAM, Mon., Dec. 23, 2024
8:00-11:00 am, SEC 117
1. (15 pts.) Solve (from scratch!) the boundary value problem

∂2u

∂x2
+ 6u = 3

∂u

∂t
, 0 < x < π , t > 0 ,

subject to
u(0, t) = 0 , u(π, t) = 0 , t > 0

u(x, 0) = sin 3x , 0 < x < π .

Ans.: u(x, t) = e−t sin 3x

First we write
u(x, t) = X(x)T (t) .

Plug this into the pde, to get

X ′′(x)T (t) + 6X(x)T (t) = 3X(x)T ′(t) .

Divide by X(x)T (t):
X ′′(x)

X(x)
+ 6 = 3

T ′(t)

T (t)
.

It is convenient to move the 6 to the right, getting:

X ′′(x)

X(x)
= 3

T ′(t)

T (t)
− 6 .

The left side does not depend on t and the right side does not depend on x. Since they
are equal to each other neither of them depends on x or t, in other words, they are equal
to the same constant. There are three cases, the constant is positive, zero, or negative.
But if that constant is positive, there is no way that we get u(x, 0) being a trig. function,
so we can assume that the constant is negative, and we write it as −λ2. So we have two
odes:

X ′′(x)

X(x)
= −λ2 .

3
T ′(t)

T (t)
− 6 = −λ2 .



Cleaning up:
X ′′(x) + λ2X(x) = 0

T ′(t)− (2− λ2/3)T (t) = 0 .

The general solution of the first equation is c1 cosλx + c2 sinλx. The general solution of
the second one is c3e

(2−λ2/3)t. So product solutions are u(x, t) = (cosλx)(e(2−λ
2/3)t) and

u(x, t) = (sinλx)e(−2+λ
2/3)t . Since u(0, t) = 0 the first family is no good. So we are left

with u(x, t) = sinλxe(2−λ
2/3)t . Using u(π, t) = 0 gives sin(λπ) = 0. Solving this trig.

equation for λ gives λπ = nπ so λ = n (n integer).

So far the candidates for building blocks are u(x, t) = sin(nx)e(2−n
2/3)t . By the principle

of superposition any (finite or infinite)linear combination of them is a solution.

u(x, t) =

∞∑
n=1

An sin(nx)e(2−n
2/3)t .

So u(x, 0) gives a Fourier Sine expansion. In general given the initial function u(x, 0) we

would find its Fourier Sine expansion and then stick e(2−n
2/3)t after the sinnx in the sigma.

But this is a lucky case. u(x, 0) is a pure sine function, whose Fourier-Sine expansion equal

itself! So n = 3 is the only term and we stick e(2−3
2/3)t = e−t after the sin 3x, getting that

the answer is (sin 3x)e−t.



2. (15 pts.) Find the eigenvalues λn, and the corresponding eigenfunctions yn(x) for the
following boundary value problem.

y′′ + λ2y = 0 , y′(0) = 0 , y′(10) = 0 .

Ans.: λn = nπ
10 yn(x) = cos(nπ10 x),where n is an integer.

The general solution of the ode is

y(x) = c1 cosλx+ c2 sinλx .

In order to take care of the boundary conditions, we need to first find y′(x):

y′(x) = −λc1 sinλx+ λc2 cosλx .

So y′(0) = λc2. This means that c2 = 0 and y(x) must be of the form

y(x) = c1 cosλx

and
y′(x) = −c1λ sinλx

Since y′(10) = 0 we need
y′(10) = −c1λ(sinλ10) .

c1 better not be zero, so we need to solve the trig. eq. sin(λ10) = 0. But the solution
of sinw = 0 is w = nπ (n integer), so we have λ10 = nπ. Solving for λ we get that the
eignevalues are λn = nπ

10 . Going back to y(x) (NOT y′(x)), we have (we can set c1 = 1)

yn(x) = cos(
nπ

10
x) .



3. (15 pts.) Solve the pde

25uxx = utt , 0 < x < π , t > 0 ,

subject to the boundary-conditions

u(0, t) = 0 , u(π, t) = 0 , t > 0 ,

and the initial conditions

u(x, 0) = sin 4x , ut(x, 0) = 5 sinx+ 10 sin 5x , 0 < x < π .

Ans.:

u(x, t) = sin 4x cos 20t+ sinx sin 5t+
2

5
sin 5x sin 25t .

This is the wave equation with a = 5, with the usual (string-instrument in music)
boundary conditions. Since both u(x, 0) ut(x, 0) are either pure sine wave functions or
finite combinations we can safely use Dr. Z.’s shortcut method.
To get u(x, t) from u(x, 0) and ut(x, 0), we multiply each sinnx term in u(x, 0) by cos(nat),

and we multiply each sinnx term in ut(x, 0) by sin(nat)
na , and add them all up. So

u(x, t) = (sin 4x) cos(5 · 4t) + 5(sinx)
cos(5t)

5
+ 10(sin 5x)

sin(5 · 5t)
5 · 5

= sin 4x cos 20t+ sinx sin 5t+
2

5
sin 5x sin 25t .



4. (15 pts.) Find the half-range cosine expansion of f(x) = x on (0, 2π).

Ans.:

f(x) = π +
4

π

∞∑
n=1

(−1)n − 1

n2
cos(

nx

2
) .

OR (even better!)

π − 8

π

∞∑
k=0

1

(2k + 1)2
cos(

2k + 1

2
x) .

Recall that the first step is to move from the interval (0, L) to the interval (0, π) by defining
g(x) = f(xLπ ). Here L = 2π so

g(x) = f(x
2π

π
) = f(2x) = 2x ,

on (0, π). Recall that at the very end, once we would have the half-range cosine expansion
of g(x), we would go back to f(x) using f(x) = g(x/2).
Using the formula sheet

a0 =
2

π

∫ π

0

g(x) dx =
2

π

∫ π

0

(2x) dx =
2

π
x2
∣∣∣π
0
=

2

π
(π2 − 02) = 2π

Next

an =
2

π

∫ π

0

2x cosnx dx =
4

π

∫ π

0

x cosnx dx .

From the formula sheet:∫
x cosnx dx =

cosnx+ nx sinnx

n2
+ C .

So

an =
4

π

∫ π

0

x cosnx dx =
4

π

cosnx+ nx sinnx

n2

∣∣∣π
0
=

4

π

(
cosnπ + nπ sinnπ

n2
− cos(n0) + nπ sin(0)

n2

)
.

Since sinnπ = 0, sin 0 =, cos 0 = 1 and cosnπ = (−1)n (since n is an integer) this becomes:

an =
4

π

(−1)n − 1

n2
.



From the formula sheet, the half-range cosine expansion of g(x) (over (0, π)) is:

g(x) =
a0
2

+
∞∑
n=1

an cosnx ,

so

g(x) = π +
4

π

∞∑
n=1

(−1)n − 1

n2
cosnx .

To get back to f(x), we use f(x) = g(x/2) getting

f(x) = π +
4

π

∞∑
n=1

(−1)n − 1

n2
cos(

nx

2
) .

This is a correct answer that would give you full credit. However, an even better answer
is to realize that when n is even (−1)n − 1 is 0 and when n is odd it is always −2. So
writing n = 2k + 1 (k = 0, 1, . . .), we get a better answer:

f(x) = π − 8

π

∞∑
k=0

1

(2k + 1)2
cos(

(2k + 1)x

2
) .



5. (15 pts. altogether )
(a) (8 points) Show that the following set of two functions, over the given interval and
weight function, is an orthogonal set.

{ f1(x) = 1, f2(x) = 5x− 3 } [0, 1] , w(x) =
√
x .

(b) (7 points) Using orthogonality (no credit for other methods!) find numbers c1 , c2
such that

5x = c1f1(x) + c2f2(x) .

Ans. to b): c1 = 3 c2 = 1

(a)

(f1(x), f2(x))w(x) =

∫ 1

0

(1)(5x− 3)
√
x dx =

∫ 1

0

(5x3/2 − 3x1/2) dx

= 5
x5/2

5/2
− 3

x3/2

3/2

∣∣∣1
0
= (2x5/2 − 2x3/2)

∣∣∣1
0
= 2− 2 = 0 .

So they are orthogonal with respect to w(x) =
√
x over the interval [0, 1].

(b)

c1 =
(f1(x), f(x))w(x)

(f1(x), f1(x))w(x)
=

∫ 1

0
(1)(5x)

√
x dx∫ 1

0
(1)(1)

√
x dx

=

∫ 1

0
5x3/2 dx∫ 1

0
x1/2 dx

=
2x5/2

∣∣∣1
0

(2/3)x3/2
∣∣∣1
0

=
(2− 0)

(2/3)(1− 0)
= 3 .

Now c2 can be computed similarly, but it is rather tedious. By this stage, once we computed
c1 using orthogonality, it is OK to “cheat” and use simple algebra. Since

5x = (3)(1) + c2(5x− 3) ,

it is obvious that c2 = 1 and it would have been foolish to do it the long way.



6. (15 pts.) Solve :

uxx + uyy = 0 , 0 < x < π , 0 < y < 1 ,

Subject to
u(0, y) = 0 , u(π, y) = 0 , 0 < y < 1 ;

u(x, 0) = 0 , u(x, 1) = (sinh 4) sin 4x+(sinh 7) sin 7x+(sinh 10) sin 10x , 0 < x < π .

Ans.: u(x, y) = sin 4x sinh 4y + sin 7x sinh 7y + sin 10x sinh 10y

There are eight kinds of product solutions to Laplace’s equation:

u(x, y) = sinλx sinhλy , u(x, y) = sinλx coshλy ,

u(x, y) = cosλx sinhλy , u(x, y) = cosλx coshλy ,

and the other ones obtained by trnasposing x and y. Since u(0, y) = 0 and u(x, 0) none
of them survives except for sinλx sinhλy. Since u(π, y) = 0 we must have sinλπ = 0
so λπ = nπ (n integer) so λ = n (integer). So the building blocks for the pde plus the
boundary conditions and the initial condition u(x, 0) = 0 are

sinnx sinhny .

By the principle of superposition, any linear combination (finite or infinite)

u(x, y) = A1 sinx sinh y +A2 sin 2x sinh 2y + . . .+An sinnx sinhn+ . . .

is yet another solution. Plugging-in y = 1 gives

u(x, 1) = A1 sinx(sinh 1) +A2 sin 2x(sinh 2) + . . .+An sinnx(sinhn) + . . .

So we need to find the half-range sine series of u(x, 1) get the coefficients A1, A2, . . . and go
back to u(x, y). In this problem u(x, 1) is already a finite combination of pure sine waves
(three of them) so it is already a sine-series. The n that show up are n = 4, n = 7 and
n = 10, so it it obvious that

u(x, y) = sin 4x sinh 4y + sin 7x sinh 7y + sin 10x sinh 10y



7. (15 pts.) Find product solutions, if possible, to the partial differential equation

2
∂u

∂x
+ 3

∂u

∂y
= 0 .

Ans.: u(x, y) = Ce
k
2 xe−

k
3 y or u(x, y) = Cek(3x−2y)

Let
u(x, y) = X(x)Y (y) .

Plug into the ode
2X ′(x)Y (y) + 3X(x)Y ′(y) = 0 .

Divide by X(x)Y (y):
2X ′(x)Y (y) + 3X(x)Y ′(y)

X(x)Y (y)
= 0 .

Simplify

2
X ′(x)

X(x)
+ 3

Y ′(y)

Y (y)
= 0 .

Leave the X(x) stuff on the left and move the Y (y) to the right:

2
X ′(x)

X(x)
= −3

Y ′(y)

Y (y)
.

The left side does not depend on y, the right side does not depend on x. They are equal
to each other, so neither depend on x or y, so they are both equal to the same constant,
let’s call it k. We have two odes:

2
X ′(x)

X(x)
= k ,

−3
Y ′(y)

Y (y)
= k .

Cleaning up

X ′(x)− k

2
X(x) = 0 ,

Y ′(y) +
k

3
Y (y) = 0 ,

The general solutions are X(x) = c1e
k
2 x Y (y) = c2e

− k
3 y, so u(x, y) = c1c2e

k
2 xe−

k
3 y.

Putting C = c1c2 we get the answer u(x, y) = Ce
k
2 xe−

k
3 y. Replacing k by 6k and do-

ing the algebra gives the nicer forms.



8. (15 pts.) Find

L−1 { 3s2 − 1

s3 − s
}

Ans.:
1 + e−t + et .

We first factorize the denominator

3s2 − 1

s(s− 1)(s+ 1)

We next try partial fraction decomposition using the template

3s2 − 1

s(s− 1)(s+ 1)
=
A

s
+

B

s+ 1
+

C

s− 1
.

Next we take common denominator of the right

3s2 − 1

s(s− 1)(s+ 1)
=
A(s+ 1)(s− 1) +Bs(s− 1) + Cs(s+ 1)

s(s− 1)(s+ 1)
.

The bottoms automatically match, so we equate the tops

3s2 − 1 = A(s+ 1)(s− 1) +Bs(s− 1) + Cs(s+ 1) .

Convenient values: s = 0 gives −1 = A(1)(−1) so A = 1; s = 1 gives 2 = C(1)(2) so
C = 1; s = −1 gives 2 = B(−1)(−2) so B = 1. Going back to the template, we have:

3s2 − 1

s(s− 1)(s+ 1)
=

1

s
+

1

s+ 1
+

1

s− 1
.

Now, and only now, do we apply L−1:

L−1{ 3s2 − 1

s(s− 1)(s+ 1)
} = L−1{1

s
}+ L−1{ 1

s+ 1
}+ L−1{ 1

s− 1
} .

And the answer follows from the table: L−1{ 1s} = 1 and L−1{ 1
s−a} = eat .



9. (15 pts.) 9a. (7 points) Compute L{(t+ 6)U(t− 6)}.

Ans.:
e−6s

s2
+ 12

e−6s

s
.

We first write (so that we can use the formula sheet formula L{f(t−a)U(t−a)} = F (s)e−as)

L{(t+ 6)U(t− 6)} = L{[(t− 6) + 12]U(t− 6)} = L{(t− 6)U(t− 6)}+ 12L{U(t− 6)} .

Using the formula with f(t) = t and f(t) = 1 for the first and second term gives the
answer.

9b. (8 points) Compute

L−1{ e−4s

(s+ 2)3
} .

Ans.:
1

2
(t− 4)2e−2(t−4)U(t− 4) .

Here F (s) = 1
(s+2)3 a = 4 in the formula L−1{F (s)e−as} = f(t − a)U(t − a). From the

table f(t) = L−1{ 1
(s+2)3 } = 1

2 t
2e−2t.



10. (15 pts.) Evaluate

L{
∫ t

0

τ15e3t−3τ dτ} .

Ans.:
15!

s16(s− 3)
.

The integral is the convolution t15∗e3t. Using the formula L{f(t)∗g(t)} = L{f(t)}L{g(t)},
we have

L{t15 ∗ e3t} = L{t15}L{e3t} =
15!

s16
· 1

s− 3
=

15!

s16(s− 3)
.



11. (15 pts.) Solve the initial-value problem

y′′ + 6y′ + 9y = δ(t− 1) , y(0) = 0 , y′(0) = 0 .

Ans.: (t− 1)e−3(t−1)U(t− 1)

We apply L to the ode, getting

L{y′′ + 6y′ + 9y} = L{δ(t− 1)}

Putting, as usuial L{y(t)} = Y (s),

s2Y (s)− sy(0)− y′(0) + 6(sY (s)− y(0)) + 9Y (s) = e−s .

Since y(0) = 0, y′(0) = 0, this becomes

s2Y (s) + 6sY (s) + 9Y (s) = e−s .

Factoring:
(s2 + 6s+ 9)Y (s) = e−s .

Solving for Y (s):

Y (s) =
e−s

s2 + 6s+ 9
=

e−s

(s+ 3)2
.

So

y(t) = L−1{Y (s)} = L−1{ e−s

(s+ 3)2
} .

We use the formula L−1{e−asF (s)} = f(t−a)U(t−a). Here a = 1 and f(t) = L−1{ 1
(s+3)2 } =

te−3t (from the table), so we get the answer.



12.(15 pts.) Using the Laplace Transform (no credit for other methods) solve the pde

uxx = 4utt , 0 < x < π , t > 0

subject to the boundary-conditions

u(0, t) = 0 , u(π, t) = 0 , t > 0 ,

and the initial conditions

u(x, 0) = sin(3x) , ut(x, 0) = 0 , 0 < x < π ,

Ans.: u(x, t) = sin(3x) cos( 3
2 t) .

Let, as usual, U(x, s) = L(u(x, t)), where the Laplce transform is w.r.t t and x is considered
as a constant parameter.
Applying the Laplace transfrom to the pde

L(uxx) = 4L(utt)

gives
U ′′(x, s) = 4(s2U(x, s)− su(x, 0)− ut(x, 0)) ,

giving
U ′′(x, s) = 4(s2U(x, s)− s sin 3x) ,

subject to the boundary conditions U(0, s) = 0, U(π, s) = 0
So the ode in x is (suppresing the dependence on s for the sake of clarity):

U ′′(x)− 4s2U(x) = −4s sin 3x

The homogeneous version, U ′′(x) − 4s2U(x) = 0 , whose characteristic equation is
λ2 − 4s2 = 0 giving the solutions λ = 2s and λ = −2s. Hene the general solution of the
hompgeneous version is

c1e
2sx + c2e

−2sx .

Regarding a particual solution, we set

U(x, s) = A sin 3x ,



where the A is to be determined (comment: since the ode has no U ′ in it, it is safe not
to do the more general template U(x, s) = A sin 3x + B cos 3x). Plugging it in into the
above ode, we get

−9A sin 3x− 4s2 sin 3x = A(−4s sin 3x) .

Solving for A we have

A =
4s

9 + 4s2
=

s

s2 + ( 3
2 )2

.

Hence the general solution of the ode is

U(x, s) = c1e
2sx + c2e

−2sx +
s

s2 + ( 3
2 )2

sin 3x .

pluging in x = 0 and x = π, we have

U(0, s) = c1 + c2 .

U(π, s) = c1e
2sπ + c2e

−2sπ .

So we have to solve the system

{c1 + c2 = 0 , c1e
2sπ + c2e

−2sπ = 0} ,

whose solution is c1 = 0 and c2 = 0. Hence the solution of the ode is

U(x, s) =
s

s2 + ( 3
2 )2

sin 3x .

Taking the inverse Laplace transform we have

u(x, t) = L−1(
s

s2 + ( 3
2 )2

sin 3x) = sin 3x cos(
3

2
t) .

This is the answer.



13. (10 points) Approximate, with mesh-size h = 1, the solution of the boundary-value
problem

uxx + uyy = 0 , 0 < x < 2 , 0 < y < 2 ;

subject to the boundary conditions

u(0, y) = 1 , 0 < y < 2 ; u(2, y) = 4 , 0 < y < 2 ;

u(x, 0) = 2 , 0 < x < 2 ; u(x, 2) = −2 , 0 < x < 2 .

Ans.: The approximation of u(1, 1) is: 5
4

u(1, 1)˜
u(1, 0) + u(2, 1) + u(1, 2) + u(0, 1)

4
=

2 + 4 + (−2) + 1)

4
=

5

4
.



14. (10 pts.) Find all the eigenvalues of the matrix[
10 −6
12 −7

]
,

and determine a basis for each eigenspace.

Ans.: smaller eigenvalue: 1 corresponding eigenfunction:

[
2
3

]
.

larger eigenvalue: 2 corresponding eigenfunction:

[
3
4

]
.

det

[
10− λ 12

4 −7− λ

]
= (10−λ)(−7−λ)−(−6)(12) = (λ+7)(λ−10)+72 = λ2−3λ+2 = (λ−1)(λ−2)

So the characteristic equation is

(λ− 1)(λ− 2) = 0 .

Solving it: gives λ = 1 and λ = 2 as the two eigenvalues.
For each of these we need to find the corresponding eigenvectors.

When λ = 1 we have to find a vector

[
a
b

]
such

[
10 −6
12 −7

] [
a
b

]
= 1 ·

[
a
b

]
.

Doing the matrix-multiplication, we get two equations

10a− 6b = a , 12a− 7b = b .

Cleaning-up
9a− 6b = 0 , 12a− 8b = 0 .

But the second is a multiple of the first, so we can discard it, and get that the general

solution is b = 9a/6 = 3a/2. Plugging this into the template

[
a
3
2a

]
Taking a = 2 (we can

take any non-zero value for a) gives the eigenvector for λ = 1.

[
2
3

]
.



When λ = 2 we have to find a vector

[
a
b

]
such

[
10 −6
12 −7

] [
a
b

]
= 2 ·

[
a
b

]
.

Doing the matrix-multiplication, we get two equations

10a− 6b = 2a , 12a− 7b = 2b .

Cleaning-up
8a− 6b = 0 , 10a− 8b = 0 .

But the second is a multiple of the first, so we can discard it, and get that the general

solution is b = 8a/6 = 4a/3. Plugging this into the template

[
a
4
3a

]
Taking a = 3 (we can

take any non-zero value for a) gives the eigenvector for λ = 2.

[
3
4

]
.


