Solutions to the Attendance Quiz for Lecture 11

1. Find the eigenfunctions and eigenvalues for the following boundary value problem.

\[y'' + \lambda^2 y = 0 \quad , \quad y(0) = 0 \quad , \quad y'(\pi) = 0 \ . \]

Sol. The general solution of the DE is

\[y(x) = c_1 \cos(\lambda x) + c_2 \sin(\lambda x) \ . \]

For future reference

\[y'(x) = -c_1 \lambda \sin(\lambda x) + c_2 \lambda \cos(\lambda x) \ . \]

Plug-in \(x = 0 \) into \(y(x) \):

\[y(0) = c_1 \cos(0) + c_2 \sin(0) = c_1 = 0 \ . \]

Since we are told that \(y(0) = 0 \), we get that \(c_1 = 0 \). Hence

\[y(x) = c_2 \sin(\lambda x) \ . \]

Now

\[y'(x) = c_2 \lambda \cos(\lambda x) \ . \]

Since we are told that \(y'(\pi) = 0 \), we get

\[y'(\pi) = c_2 \lambda \cos(\lambda \pi) = 0 \ . \]

Since \(c_2 \neq 0 \) (or else we get that \(y(x) \) is the zero function and that does not count) and also \(\lambda \neq 0 \), we must have

\[\cos(\lambda \pi) = 0 \ . \]

We know from trig. that \(\cos w = 0 \) when \(w = \pi/2, 3\pi/2, 5\pi/2 \) and in general \(w = (n + \frac{1}{2})\pi \), it must be that

\[\lambda \pi = (n + \frac{1}{2})\pi \ . \]

Solving for \(\lambda \), (divide both sides by \(\pi \)) we get \(\lambda = n + \frac{1}{2} \). So the eigenvalues are all “half-integers” \(\pm 1/2, \pm 3/2, \ldots \), and in general \(n + \frac{1}{2} \) (\(n \) integer), and the corresponding eigenfunctions are \(\sin(n + \frac{1}{2})x \).

Ans.: The eigenvalues are \(n + \frac{1}{2} \) (\(n \) any integer) and the respective eigenfunctions are \(\sin(n + \frac{1}{2})x \).

Comments:

1. About %30 of the people got it completely.

2. A fairly common error was replacing \(\cos \lambda \pi \) by \((-1)^\lambda \). This is wrong! It is only true when \(\lambda \) happens to be an integer (whole numbers). If in doubt, plug in \(\lambda = 1/2 \) or whatever and see that you get something wrong.
3. Some people had trouble solving the equation

$$\cos(\lambda \pi) = 0 .$$

Do it in **two** steps. First solve

$$\cos w = 0 .$$

By the trig. identity $\cos(n + \frac{1}{2})\pi = 0$, the solutions are $w = (n + \frac{1}{2})\pi$.

But $w = \lambda \pi$ so

$$(n + \frac{1}{2})\pi = \lambda \pi .$$

Now cancel out the π and get that the lucky λ are $\lambda = (n + \frac{1}{2})$.

4. Many people figured out correctly that $\lambda_n = n + \frac{1}{2}$ are the eigenvalues, but then said that the eigenfunction $y_n(x)$ equals $\cos(n + \frac{1}{2})x$, and some people said that it was $\lambda \cos(n + \frac{1}{2})x$. This is wrong! Don’t plug the λ_n into $y'(x)$, but into $y(x)$ itself. Since $y(x) = c_2 \sin \lambda x$ it follows that $y_n(x) = c_2 \sin(n + \frac{1}{2})x$, and you can make $c_2 = 1$ to get the ‘nicest-looking’ eigenfunction.