Dr. Z.'s Calc5 Homework assignment 7

Version of Oct. 13, 2014

1. Show that the given functions are orthogonal on the given interval.

$$f_1(x) = e^{x^2} x^5$$
, $f_2(x) = e^{-x^2} (x^4 + x^2)$, $[-1,1]$.

2. Determine whether the following set of functions constitute an orthogonal set on the interval [0, 1].

$$f_1(x) = 1$$
 , $f_2(x) = 2x - 1$, $f_3(x) = 3x^2 - 1$.

3. Determine whether the following set of functions constitute an orthogonal set on the interval [0,1] with respect to the weight function $w(x) = x^2$.

$$f_1(x) = 1$$
 , $f_2(x) = 4x - 9$

4. Show that $\{\sin nx\}$, n = 1, 2, ... is orthogonal over the interval $[0, \pi]$. Also find the norm of each function.

5. Show that $\{cos(n\pi/3)x\}$, n = 0, 1, 2, ... is orthogonal over the interval [0, 3]. Also find the norm of each function.

6. Verify by direct integration that the functions are orthogonal with respect to the indicated weight function on the given interval

$$L_0(x) = 1$$
 , $L_1(x) = -x + 1$, $L_2(x) = \frac{1}{2}x^2 - 2x + 1$; $w(x) = e^{-x}$, $[0, \infty)$.

7. [YOU ARE ENCOURAGED TO USE MAPLE]

(a) Show that the following set of functions, over the given interval and weight function is an orthogonal set.

{
$$f_1(x) = 1$$
, $f_2(x) = 5x - 4$, $f_3(x) = 21x^2 - 30x + 10$ }, $[0, 1]$, $w(x) = x^3$

(b) Using orthogonality (no credit for other methods!) find numbers c_1, c_2, c_23 such that

$$21x^2 = c_1 f_1(x) + c_2 f_2(x) + c_3 f_3(x)$$

.

(c) Check directly the answer to part (b).