Dr. Z.'s Calc5 Homework assignment 17

1. Solve:

$$u_{xx} + u_{yy} = 0$$
 , $0 < x < \pi$, $0 < y < 1$,

Subject to

$$u(0,y) = 0$$
 , $u(\pi,y) = 0$, $0 < y < 1$;
$$u(x,0) = 0$$
 , $u(x,1) = f(x)$, $0 < x < \pi$.

2. Solve :

$$u_{xx} + u_{yy} = 0$$
 , $0 < x < \pi$, $0 < y < 1$,

Subject to

$$u(0,y) = 0$$
 , $u(\pi,y) = 0$, $0 < y < 1$;
$$u_y(x,0) = 0$$
 , $u(x,1) = f(x)$, $0 < x < \pi$.

3. Solve :

$$u_{xx} + u_{yy} = 0$$
 , $0 < x < \pi$, $0 < y < 1$,

Subject to

$$u_x(0,y) = 0$$
 , $u_x(\pi,y) = 0$, $0 < y < 1$;
$$u_y(x,0) = 0$$
 , $u(x,1) = f(x)$, $0 < x < \pi$.

4. Explain how you would solve the following boundary-value pde problem

$$u_{xx} + u_{yy} = 0$$
 , $0 < x < 3$, $0 < y < 4$
$$u(0,y) = y^3$$
 , $u(3,y) = \cos 7y$, $0 < y < 4$.
$$u(x,0) = x^3$$
 , $u(x,4) = e^x$, $0 < x < 3$.

By breaking it up into two simpler problems. Do not solve these problems.