Dr. Z.'s Calc5 Homework assignment 17

1. Solve :

$$
u_{x x}+u_{y y}=0 \quad, \quad 0<x<\pi \quad, \quad 0<y<1
$$

Subject to

$$
\begin{gathered}
u(0, y)=0 \quad, \quad u(\pi, y)=0 \quad, \quad 0<y<1 \\
u(x, 0)=0 \quad, \quad u(x, 1)=f(x) \quad, \quad 0<x<\pi
\end{gathered}
$$

2. Solve :

$$
u_{x x}+u_{y y}=0 \quad, \quad 0<x<\pi \quad, \quad 0<y<1
$$

Subject to

$$
\begin{gathered}
u(0, y)=0 \quad, \quad u(\pi, y)=0 \quad, \quad 0<y<1 \\
u_{y}(x, 0)=0 \quad, \quad u(x, 1)=f(x) \quad, \quad 0<x<\pi
\end{gathered}
$$

3. Solve :

$$
u_{x x}+u_{y y}=0 \quad, \quad 0<x<\pi \quad, \quad 0<y<1
$$

Subject to

$$
\begin{gathered}
u_{x}(0, y)=0 \quad, \quad u_{x}(\pi, y)=0 \quad, \quad 0<y<1 \\
u_{y}(x, 0)=0 \quad, \quad u(x, 1)=f(x) \quad, \quad 0<x<\pi
\end{gathered}
$$

4. Explain how you would solve the following boundary-value pde problem

$$
\begin{gathered}
u_{x x}+u_{y y}=0 \quad, \quad 0<x<3 \quad, \quad 0<y<4 \\
u(0, y)=y^{3} \quad, \quad u(3, y)=\cos 7 y, \quad 0<y<4 \\
u(x, 0)=x^{3} \quad, \quad u(x, 4)=e^{x} \quad, \quad 0<x<3
\end{gathered}
$$

By breaking it up into two simpler problems. Do not solve these problems.

