Dr. Z.'s Calc5 Homework assignment 17 1. Solve: $$u_{xx} + u_{yy} = 0$$, $0 < x < \pi$, $0 < y < 1$, Subject to $$u(0,y) = 0$$, $u(\pi,y) = 0$, $0 < y < 1$; $$u(x,0) = 0$$, $u(x,1) = f(x)$, $0 < x < \pi$. **2.** Solve : $$u_{xx} + u_{yy} = 0$$, $0 < x < \pi$, $0 < y < 1$, Subject to $$u(0,y) = 0$$, $u(\pi,y) = 0$, $0 < y < 1$; $$u_y(x,0) = 0$$, $u(x,1) = f(x)$, $0 < x < \pi$. **3.** Solve : $$u_{xx} + u_{yy} = 0$$, $0 < x < \pi$, $0 < y < 1$, Subject to $$u_x(0,y) = 0$$, $u_x(\pi,y) = 0$, $0 < y < 1$; $$u_y(x,0) = 0$$, $u(x,1) = f(x)$, $0 < x < \pi$. 4. Explain how you would solve the following boundary-value pde problem $$u_{xx} + u_{yy} = 0$$, $0 < x < 3$, $0 < y < 4$ $$u(0,y) = y^3$$, $u(3,y) = \cos 7y$, $0 < y < 4$. $$u(x,0) = x^3$$, $u(x,4) = e^x$, $0 < x < 3$. By breaking it up into two simpler problems. Do not solve these problems.