Dr. Z.’s Calc5 Cheatsheet (Version of Oct. 13, 2014)
[Note: This is the only sheet allowed in any of the quizzes and exams. No calculators of course!]
Calc(-1) Reminders: The roots of ax? + bx + ¢ = 0 are (—b £ /b2 — 4ac)/2a .

CalcO0 Reminders:

sin?z+cos’z =1 , sin(z4y) =sinzcosytcosxsiny , cos(z+y) = coszcosy—sinzsiny
2 .2 . : 2 1+ cos 2z . 9 1 —cos2z
cos2x =cos“z—sin“xz , sin2x =2sinzcosxr , cosx = — sin“x = —

1 1
cos Acos B = i(cos(A — B)+cos(A+ B)) , sinAsinB = §(cos(A — B) —cos(A + B))
If n is an integer:

1 1
sinpr =0 , cosnm=(-1)" | sin(n+§)7r:(—1)" , cos(n—|—§)7r:0

Calcl Reminders: (fg)' = f'g+ fg', (L) = LLLL, (f(g(@)) = f'(9(x))g' ().

(z™) =na"t, (") =e”, (sinz) = cosw, (cosx) = —sinz, (Inz) = <.

Calc2 Reminders: [wv' =uv — [u'v, f(z)=> ", - )(a)( a)", f(z) =37, f(n)z(o) "
[edr = <~ 4+ C (if ¢ #0), [sin(cz)dr = —= (Cw) + C, [ cos(cz) dz = Sm(cm) +C, (if ¢ 75 0),
[-Ldz=Inlz—a|+C.
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o0
/ x"e ¥dx =n! (n positive integer)
0

by - cos (ax) e’® sin (ax) e®®
dz = —
/e sin(ax) dx L 21 o
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bx
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/e cos(ax) dz 2 1 a2 2 1o

cos (ax) + zsin (ax) a

a2

/ x cos(ax) dr =

sin (ax) — xz cos (ax) a

/:L' sin(az) de = 5
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. xcosaxr n B
/w” sin(ax)dr = ———— + — /x" cosax dx
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/:L‘" cos(ax)der = —— — — /:U”l sin ax dx

a a
oo
/ x"e *dr = n!
0
Polar — Rectangular: z = rcosf,y = rsin ; Rectangular — Polar: r = /22 + 32,0 = tan™! g,

Calc3 Reminders: (f;), = (fy)z, grad f =< fz, fy, f2 >, div < F1, F5, F3 >= (F1), + (F2)y +
(F3)z, curl < P, Fo, F3 >=< (F3)y — (F2)z, (F1)2 — (F3)a, (F2)z — (F1)y >,

Calc4 Reminders:

The general solution of ay”(x) + by’ (z) + cy(x) = 0 (a, b, c real numbers) is y(x) = Ae** + BeP* if
a, 3 are roots of ar? 4+ br +c¢ = 0 and they are real and distinct. If & = 3 then the general solution
is y(z) = Ae*® + Bxe®®. If they are complex, p £ i\ then it is y(x) = e#** (A cos Az + Bsin Ax). In
particular, the general solution of y”(x) + A?y(x) = 0 is y(z) = Acos Az + B sin \x.

The general solution of y”(x) — A\2y(z) = 0 may be written either as Ae** + Be™** or as A cosh Az +
Bsinh A\z.

The Cauchy-Euler differential equation
R’ (r) +rR (r) —n*R(r) =0 ,

has the general solution
R(r)=Cir" 4+ Cor " |
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when n > 0. When n = 0, the general solution is R(r) = Cy + CzInr.
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e”* =cosz+ising, cosz = , sinz =
Discretization of PDEs

The discrete approximations of the second derivatives with mesh-size h are:

1
Upy R E[U(ZL‘ + h, y) - QU(I', y) + U(CB - h7 y)] )

1
tyy ~ 3w,y +h) = 2u(z,y) +ule,y — )]

Numerical Solution of 2D Laplacian Dirichlet problems

The five-point approximation of the Laplacian uz, + u,, (in 2D) is

1
Uss + Uy X pofu(e +hy) +ulz,y +h) +u(z = hy) +u(z,y - h) - du(z, y)]

To numerically (approximately) solve the Dirichlet problem g, + 1y, = 0 in a region D with
boundary condition u(z,y) = F(z,y) along the boundary with mesh-size h, you set u;; =
u(ih, jh) and set-up a system of linear equation as follows.

For each (ih,jh) inside the region, you have an equation
Uit1,j + Uigpr + Uio1,j + U1 —4ui; =0,

and for every boundary point
uij = F(ih, jh)

Then do the linear algebra, and the solutions, {u; ;} would give you approximations for the values
of the “real thing” at the interior points {(ih, jh)}.

Laplace Transform

F(s) = / T ietdr
k-l

_ 1 k1 : _ at __ 1
5{1} - g ) [’{t } - gk+1 (k - 1)2>37 ) ’ L{@ } - s—a
Clsinkt) = — " L{coskt) = ——— L{sinhkt} = — L{coshkt} = —>
o824 k2 24 k2 o2 —k2 Cs2 — k2
1 1 th—1 1
=1 =)= =1,2,3,... ! = e
1 sin kt s 1 sinh kt s
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[’ {S2+]€2}_ k‘ 9 ‘C {82+k2}_COSkt 9 L {82*]{2}_ k ) [’ {5271{:2

} = cosh kt



Ly} =Y(s) , L{Y'O}=sY(s)-y(0) , L{y"()} = s(sY(s)~y(0))~y'(0) = s*Y (s)—sy(0)~y'(0)

L{y™ ()} = s"Y (s) — 5" y(0) = s" 2y (0) — ... — y"D(0)
Clet () = F(s—a) , L£7HF(s—a)} = e (1)
“} = 7k! = e™ sin ke e cos - a
L{tFe} = o (k=1,2,3,...) , £L{ kt} = Goari £{ kt} = ook
B k=1 pat . 1 _ e sin kt 1 s—a at
L {(S—a)k‘}_( P (k=1,2,3,...) , L {(s—a)2+k2}_ p , L {m}_e cos kt

L{f(t—a)U(t—a)}=e*F(s) (if a>0)
L He ™ F(s)} = f(t —a)U(t —a) (if a>0)

L")} = ()" P(s) (n pos. integer).

0= [ seonte-na

L{f g} = L{F ()} L{g(t)} = F(s)G(s)
LTHF(5)G(s) = (f *9)(1)

m/vaﬂ=F® ,

Py - /f
L{5(t—to)} = e
LY =1

Orthogonal Functions

Two functions f(z) and g(x) defined on an interval [a,b] are orthogonal with respect to the

b
/fumwwwm=

A set of functions ¢1(x), ¢2(x), ¢3(x), ... is an orthogonal set over [a, b] with respect to the weight

weight function w(z) if

function w(x) if the ¢;’s are all orthogonal to each other, with respect to w(z). In other words

/gbm Yon(z)w(x)de =0 whenver m#n .

The inner-product of two functions (f(x),g(z)) over [a,b] with respect to the weight function

b
—/f@M@M@M

w(z) is



The norm-squared of a function f(z) on an interval [a,b] with respect to the weight-function

w(z) is
b
12 = (2 P = / f(@)? w(z)da

A set of functions ¢q(x), ¢2(x), ¢3(z),... is orthonormal over [a,b] with respect to the weight-
function w(x) if it is orthogonal and the norms are all equal to 1.

Fourier Series (over (—m, 7))

If a function f(x) is defined over the interval (—m, ), then its Fourier series is

o0 o0

ap .

54— E a, cosnx + E b,sinnx
n=1 n=1

where the number ag is given

1 ™
= — d
w:=2 f(z)dz
and the numbers a1, as,as, ... and by, bo, b3, ... are given by:
1 s
ap = — f(x)cosnxdx
m —T
1 (7 .
by, = — f(x)sinnx dx
T

Fourier Series (over (—L, L))

First Way:find the function g(z) = f(xL/x), that is defined over (—m, ), and then go back using
f(@) =g(an/L).

Second (Direct Way)

If a function f(x) is defined over the interval (—L, L), then its Fourier series is
a > nm s nm
30 + nzl an, cos(f:z:) + nzl bn, sin(fa:) ,

where the number ag is given

and the numbers a1, a9, as,... and by, bo, b3, ... are given by:

L
ap, = 2/_L f(x) cos(%a:) dr

by, = 11,//_LL f(x) sin(%w) dx
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A function f(x) is even if
A function f(z) is odd if

If f(x) is even then [ f(z)dx =2 [ f(z)dx.
If f(z) is odd then [ f(z)dz = 0.
Fourier Cosine Series (for Even Functions)

The Fourier series of an even function f(x) on the interval (—m, 7) is the cosine series (no sines
show up!)

oo

ao

?—FE a, cosnx
n=1

where

aozi/o fa)dz

2 s
ap = / f(x) cosnx dx
T Jo

Fourier Sine Series (for Odd Functions) The Fourier series of an odd function f(x) on the

interval (—m,7) is the sine series (no cosines show up!)

o
g by sinnx
n=1

where

2 T
by, = / f(x)sinnx dx
T Jo

Half Range Expansion If a function f(z) is only defined on (0, 7), then we can extend it to
(—m, ) to either get an even function, and find its cosine series, or to an odd function and get
its sine series. Both of them are supposed to converge to f(z) in (0,7).

The complex Fourier series of a function f defined on the interval (—m, ) is given by
o0
Z c einm
n 9
n=-—oo

where Lo
Cp = — f(x)e ™™ dx |, n=0,+1,+2,...

T on o

The complex Fourier series of a function f defined on a general interval (—p,p) is given by

0o
E : Cneznﬂ'x/p

n=—oo



where
1

p )
=g | f@eTEr =0k

-P

C

Sturm-Liouville Problem

A Regular Sturm-Liouville Problem on an interval [a,b] is a differential equation of the

form

L@ + (o) + @)y =0

subject to the boundary conditions
Ary(a) + Biy'(a) =0

Asy(b) + Bay'(b) = 0

Here p, ¢, r are continuous functions, and in addition r’(x) should also be continuous. Also we need
r(z) > 0 and p(x) > 0 on the interval [a, b].

Singular Sturm-Liouville Problem on an interval [a, b] is a differential equation of the above
form but the condition that r(z) > 0 in [a, b] is not always true, but then you only use some of the
boundary conditions.

For most \’s there is no solution (except for the “trivial solution” y(x) = 0). Those lucky ones
for which there is a non-zero solution are called eigenvalues and the corresponding solutions are

called eigenfunctions.

Sturm-Liouville Theorem: 1. For a regular Sturm-Liouville problem there exist an infinite
number of eigenvalues
)\1<A2<)\3<...

such that \,, — oo.
2. Each eigenvalue \; has just one corresponding eigenfunction y;(x) (up to a constant multiple)

3. All the eigenfunctions are linearly independent. In other words, there is no way that you can

express one of them as a linear combination of other ones.

4. The eigenfunctions {y;(x)} are orthogonal over [a,b] with respect to the weight-function
p().

Fourier-Legendre Series

The Legendre polynomials { P, (x)}52, are defined by the generating function
o
Z P (2)t" = (1 — 2at + )" 1/2
n=0
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Another way to define them is via the recurrence

_2n71 n—1

P,(x) xP,_1(z) — P,_o(z)

n

subject to the initial values:
Py(z)=1 Pi(x)==x

The Fourier-Legendre series of a function f(z) defined on the interval (—1,1) is given by

oo

f(z) = Z cnPo(x)
n=0
where )
2n+1
Cn =~ / f(z)P,(x) dx
-1
Heat Equation
1. Both ends are at temperature 0:
The solution of 52 5
U U
k—s = — L t
52 = B 0<x< ., t>0
subject to
u(0,t)=0 , w(L,t)=0 , ¢t>0
u(z,0)=f(z) , O0<z<L ,
is -
u(et) = 3 Ape O sin S
n=1
where

nm

2 L
An:L/O f(a:)smf$d1:

2. Both ends are insulated

The solution of o 5
U U
— =, O<ax<L , t>0
ar2 ot v
subject to

uy(0,8) =0 , wu,(L,t)=0 , t>0
u(z,0) = f(z) , O0<zx<L ,
is

Ay &=

u(z,t) = 5> + Z Ape R ™ /L)t oog n%x ,
n=1
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where . .
2 2
:L/o f(x)dz | An:L/O f(:v)cos%xdm

Wave Equation (Special case: L = )

The solution of the boundary value wave equation

Pugy =uy , O<z<m , t>0 ;

u(0,t)=0 , wu(mt)=0 , t>0 ;
u(z,0) = f(x) , w(z,0)=g(x) , 0<z<m
is

Z (A, cos(nat) + By, sin(nat)) sin(nz)

where the numbers A,, and B,, are given by the formulas

/ f(z)sinnxdr

B, =— g(x) sin nz dz.

Wave Equation (General Case)

The solution of the boundary value wave equation
Uy = Uy , O<ax<L , t>0 ;

w(0,)=0 , w(L,t)=0 , t>0 ;
u(x,O) = f(.%’) y ut(x70) = g(%) ) 0<z<L
is
nm

u(z,t) = Z (An cos(?t) + B, sin(?t)) sin(fx)

n=1

where the numbers A,, and B,, are given by the formulas

/ flx Sin—xdm ,

2 nm
B, = — —xdx.
nma | g(x) sin T edr

Boundary Superposition Principle for the 2D Laplace’s Equation
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If you have a complicated so-called Dirichlet boundary value problem
Ugy +Uyy =0 , 0<z<a , 0<y<b ,
u(0,9) =F(y) . wulay)=Gl) , 0<y<b
u(z,0) = f(z) , w(z,b)=g9g(x) , 0<z<a
You break-it up into two problems as follows.
First Problem: Find the solution, let’s call it ui(z,y) satisfying
(U)gz + (U1)yy =0 , O0<z<a , 0<y<b ,
ur(0,9) =0 , wfa,y)=0 , 0<y<b ,
ui(z,0) = f(z) , wi(z,b)=g9g(xr) , 0<z<a
Second Problem: Find the solution, let’s call it us(x,y) satisfying
(u2)ga + (u2)yy =0 , O0<zx<a , 0<y<bd ,
up(0,y) = Fy) , wuz(ay)=Gly) , 0<y<b ,

ug(z,0) =0 , wu2(z,b)=0 , 0<zx<a

Once you solved these (already complicated!) two problems, the final solution, to the original
problem, is simply
U(.ﬁ, y) = ul(xa y) =+ UQ(I', y)

In other words, just add them up!
Laplace’s Equation in Polar Coordinates
The Laplacian Equation in two dimensions
0? 0?
— + = |u(z,y) =0
phrased in the usual rectangular coordinates (z,y), becomes, in polar coordinates (r,6),

0? 10 1 0%
(W o +ae> ulr8) =0

Laplace Transform for 2D PDEs:

If L{u(z,t)} = U(x,s), then
E{ZQ;} = sU(z,s) —u(z,0)
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E{a—g} = s?U(x,s) — su(x,0) — uy(x,0)

ot
ou,  0U(z,s)
E{% B Ox
0%u 0?U(z, s)
Homt = 2

Fourier Integral

The Fourier Integral of a function f(x) defined on the real line (—o0, c0) is given by

1 o0
/ [A(a) cosax + B(a)sinazr | da
0

™

where

Ala) = /_Z f(z) cos ax dx:
B(a) = /_O:O f(z)sinax dx

Fourier Transform:

Flf@) = [ f@eds = Fla)
Inverse Fourier Transform:

FOF@} = o [ Pl da = j(2)

2 J_ o

Fourier Sine Transform:

F{f(x)} = /000 f(z)sinaxdr = F(«)

Inverse Fourier Sine Transform:

FYF(a)} = i/ooo Fla)sinazda = f(z)

Fourier Cosine Transform:

Fe{f(x)} = /000 f(z)cosaxdr = F(«)
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Inverse Fourier Cosine Transform:

FHF(a)) = i/ooo F(a)cosaxda = f(z) .
If 7{f(z)} = F(«) then for n =1,2,3,....
FU (@)} = (—ie)"F(a) .

If F,{f(z)} = F(a) then
FAf"(x)} = —a?F(a) + af(0) .

If F.{f(z)} = F(«) then
Fe{f"(2)} = —a’F(a) — f(0) .
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