Eigenvalues and Eigenvectors of 2×2 matrices

by Edinah K. Gnang

Definition 0

A 2×2 square matrix \mathbf{A} is a table of the form

$$
\mathbf{A}:=\left[\begin{array}{ll}
a_{1,1} & a_{1,2} \tag{1}\\
a_{2,1} & a_{2,2}
\end{array}\right]
$$

such a matrix induces a function

$$
f_{\mathbf{A}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

which takes vectors $\mathbf{x} \in \mathbb{R}^{2}$ as input and outputs a new vector $f_{\mathbf{A}}(\mathbf{x}) \in \mathbb{R}^{2}$. Let

$$
\mathbf{x}:=\left[\begin{array}{l}
x_{1} \tag{2}\\
x_{2}
\end{array}\right]
$$

the function $f_{\mathbf{A}}(\mathbf{x})$ induced by the matrix \mathbf{A} is expressed by

$$
f_{\mathbf{A}}(\mathbf{x}):=\mathbf{A} \cdot \mathbf{x}=\left[\begin{array}{l}
a_{1,1} \cdot x_{1}+a_{1,2} \cdot x_{2} \tag{3}\\
a_{2,1} \cdot x_{1}+a_{2,2} \cdot x_{2}
\end{array}\right]
$$

Example 0

Let \mathbf{A} denote a 2×2 matrix expressed by

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 2 \tag{4}\\
3 & 4
\end{array}\right]
$$

and let $f_{\mathbf{A}}(\mathbf{x})$ denote the corresponding induced function of $\mathbf{x}:=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ expressed by

$$
f_{\mathbf{A}}(\mathbf{x}):=\mathbf{A} \cdot \mathbf{x}=\left[\begin{array}{c}
x_{1}+2 x_{2} \tag{5}\\
3 x_{1}+4 x_{2}
\end{array}\right]
$$

incidentally $f\left(\left[\begin{array}{l}5 \\ 6\end{array}\right]\right)$ for instance is

$$
f\left(\left[\begin{array}{l}
5 \tag{6}\\
6
\end{array}\right]\right)=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \cdot\left[\begin{array}{l}
5 \\
6
\end{array}\right]=\left[\begin{array}{l}
1 \times 5+2 \times 6 \\
3 \times 5+4 \times 6
\end{array}\right]=\left[\begin{array}{l}
17 \\
39
\end{array}\right]
$$

Definition 1

A nonzero vector \mathbf{x} is an eigenvector of \mathbf{A} if there exists a constant λ, called an eigenvalue, such that

$$
\begin{equation*}
f(\mathbf{x})=\lambda \mathbf{x} \Leftrightarrow \mathbf{A} \cdot \mathbf{x}=\lambda \mathbf{x} \tag{7}
\end{equation*}
$$

0.1 Solving for the Eigenvalues of 2×2 matrices

To obtain the eigenvalues for a 2×2 matrix \mathbf{A} we solve the polynomial equation $\operatorname{det}(\lambda I-A)=\mathbf{0}$:

$$
\operatorname{det}\left(\left[\begin{array}{cc}
\lambda-a_{1,1} & -a_{1,2} \tag{8}\\
-a_{2,1} & \lambda-a_{2,2}
\end{array}\right]\right)=0
$$

in other words we solve the characteristic equation expressed by

$$
\begin{equation*}
p_{\mathbf{A}}(\lambda)=\left(\lambda-a_{1,1}\right)\left(\lambda-a_{2,2}\right)-a_{1,2} a_{2,1}=\lambda^{2}-\left(a_{1,1}+a_{2,2}\right) \lambda+\left(a_{1,1} a_{2,2}-a_{1,2} a_{2,1}\right) \tag{9}
\end{equation*}
$$

Example 1 (part 1)

Let \mathbf{A} denote the 2×2 matrix expressed by

$$
\mathbf{A}=\left[\begin{array}{cc}
0 & -6 \\
1 & 5
\end{array}\right]
$$

the corresponding eigenvalues are found by solving the equation

$$
\begin{gathered}
p(\lambda)=\operatorname{det}\left(\left[\begin{array}{cc}
\lambda-0 & 6 \\
-1 & \lambda-5
\end{array}\right]\right)=0 \\
p(\lambda)=\lambda^{2}-5 \lambda+6
\end{gathered}
$$

from which it follows that the eigenvalues are determined by solving the equation

$$
\lambda^{2}-5 \lambda+6=0
$$

whose solution is expressed by

$$
\lambda \in\{2,3\}
$$

0.2 Solving for the Eigenvectors of 2×2 matrices

Once we have solved for the eigenvalues, the eigenvectors are computed by solving linear system of equations

$$
\begin{equation*}
f_{\mathbf{A}}(\mathbf{x})=\lambda \mathbf{x} \Leftrightarrow \mathbf{A} \cdot \mathbf{x}=\lambda \mathbf{x} \tag{10}
\end{equation*}
$$

for each one of the eigenvalues.

Example 1 (part 2)

We recall that in Example part 1 we have determined that the eigenvalues of

$$
\mathbf{A}=\left[\begin{array}{cc}
0 & -6 \\
1 & 5
\end{array}\right]
$$

are given by

$$
\left\{\lambda_{1}=2, \quad \lambda_{2}=3\right\} .
$$

The eigenvector corresponding to the eigenvalue $\lambda_{1}=2$ is given by solving the system

$$
\left[\begin{array}{cc}
0 & -6 \\
1 & 5
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
2 x_{1} \\
2 x_{2}
\end{array}\right]
$$

equivalently written as

$$
\begin{array}{r}
\left\{\begin{array}{ccc}
-6 x_{2} & = & 2 x_{1} \\
x_{1}+5 x_{2} & = & 2 x_{2}
\end{array}\right. \\
\Rightarrow\left\{\begin{array}{ccc}
-2 x_{1}-6 x_{2} & =0 \\
x_{1}+3 x_{2} & = & 0
\end{array}\right.
\end{array}
$$

substitution or elimination yields

$$
x_{1}=-3 x_{2}
$$

hence the corresponding eigenvector space is determined by the parametric line $\forall s \in \mathbb{R}$

$$
\left\{\begin{array}{l}
x_{1}=-3 s \\
x_{2}=s
\end{array}\right.
$$

The eigenvector space associated with the eigenvalue $\lambda_{1}=2$ is the vector space specified by

$$
s \mathbf{v}_{1}=s\left[\begin{array}{c}
-3 \tag{11}\\
1
\end{array}\right]
$$

similarly we solve for the eigenvector corresponding to the eigenvalue $\lambda_{2}=3$

$$
\left[\begin{array}{cc}
0 & -6 \\
1 & 5
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
3 x_{1} \\
3 x_{2}
\end{array}\right]
$$

equivalently written as

$$
\begin{array}{r}
\left\{\begin{array}{ccc}
-6 x_{2} & = & 3 x_{1} \\
x_{1}+5 x_{2} & = & 3 x_{2}
\end{array}\right. \\
\Rightarrow\left\{\begin{array}{ccc}
-3 x_{1}-6 x_{2} & = & 0 \\
x_{1}+2 x_{2} & = & 0
\end{array}\right.
\end{array}
$$

substitution or elimination yields

$$
x_{1}=-2 x_{2}
$$

hence the corresponding eigenvectors space is determined by the parametric line $\forall t \in \mathbb{R}$

$$
\left\{\begin{array}{l}
x_{1}=-2 t \\
x_{2}=t
\end{array}\right.
$$

The eigenvector space associated with the eigenvalue $\lambda_{2}=3$ is the vector space specified by

$$
t \mathbf{v}_{2}=t\left[\begin{array}{c}
-2 \tag{12}\\
1
\end{array}\right]
$$

In summary we say that the matrix

$$
\mathbf{A}=\left[\begin{array}{cc}
0 & -6 \\
1 & 5
\end{array}\right]
$$

has eigenvalues/eigenvector pairs or equivalently we say that the spectrum of \mathbf{A} denoted $\operatorname{Spec}(\mathbf{A})$ is expressed by

$$
\operatorname{Spec}(\mathbf{A})=\left\{\left(\lambda_{1}=2, \mathbf{v}_{1}=\frac{1}{\sqrt{10}}\left[\begin{array}{c}
-3 \\
1
\end{array}\right]\right),\left(\lambda_{2}=3, \mathbf{v}_{2}=\frac{1}{\sqrt{5}}\left[\begin{array}{c}
-2 \\
1
\end{array}\right]\right)\right\}
$$

