Dr. Z.'s Shortcut Methods for Solving Boundary Value Problems for PDEs

By Doron Zeilberger
Fourier Series (over $(-\pi, \pi)$)
Every function defined on the interval $(-\pi, \pi)$ can be written as a finite or (more often infinite) linear combination of pure sine-waves and pure cosine-waves (and the constant function).

If it ain't broke don't fix it

If the function is given as either a pure sine-wave ($\sin n x$ for some integer n), or pure cosine-wave ($\cos n x$ for some integer n), or is a constant function (e.g. 8), then: Its Fourier Series is Itself!.

Also if it is a finite combination of pure sine and/or cosine waves.
Examples: The Fourier series over $(-\pi, \pi)$ of the following functions are themselves.

$$
f(x)=5 \quad, \quad f(x)=11 \cos 7 x \quad, \quad f(x)=11 \sin 3 x \quad, \quad f(x)=-6 \sin x+10+11 \sin 3 x-\cos 5 x+3 \cos 8 x
$$

Non-Examples: The Fourier series over $(-\pi, \pi)$ of the following functions are NOT themselves

$$
f(x)=5 \sin (x / 2) \quad, \quad f(x)=\cos (7 x / 3) \quad, \quad f(x)=x \quad, \quad f(x)=x^{2}
$$

Only if the function $f(x)$ is not a pure sine-waves or cosine-waves or a finite linear combination of these, do you have to use the formula.

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x
$$

where the number a_{0} is given

$$
a_{0}:=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x
$$

and the numbers $a_{1}, a_{2}, a_{3}, \ldots$ and $b_{1}, b_{2}, b_{3}, \ldots$ are given by:

$$
\begin{aligned}
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x
\end{aligned}
$$

Fourier Series (over $(-L, L)$) find the function $g(x)=f(x L / \pi)$, that is defined over $(-\pi, \pi)$, and then go back using $f(x)=g(x \pi / L)$.

In this case the building blocks are $\sin ((\pi / L) n x), \cos ((\pi / L) n x)$ and the constant functions. So if you have to find the Fourier series of $3 \sin ((5 / 2) x)+11 \cos ((11 / 2) x)$ over $(-2 \pi, 2 \pi)$, it would be the same as the function. Even $\sin (5 x)$ would be OK, since it has the right format $\sin ((10 / 2) x)$. On the other hand $\sin ((11 / 4) x)$ would not be its own Fourier series, you have to do it the long way.

Half Range Fourier Cosine Series

The Fourier Cosine series of a function $f(x)$ defined on the interval $(0, \pi)$ is:

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x
$$

where

$$
\begin{gathered}
a_{0}=\frac{2}{\pi} \int_{0}^{\pi} f(x) d x, \\
a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x .
\end{gathered}
$$

But if the given function is a combination of $\cos n x$ (n integer) then its Fourier-Cosine series equals itself. For example the Half-Range Fourier-Cosine Series of $f(x)=5+2 \cos 4 x-11 \cos 7 x$ equals itself! On the other hand if $f(x)=\sin x$ or $f(x)=\cos (7 x / 2)$ you would have to do it the long way, using the formulas.

Half Range Fourier Sine Series

The Fourier Sine series of a function $f(x)$ defined on the interval $(0, \pi)$ is:

$$
\sum_{n=1}^{\infty} b_{n} \sin n x
$$

where

$$
b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x
$$

But if the given function is a combination of $\sin n x$ (n integer) then its Half-Range Fourier-Sine series equals itself. For example, the Half-Range Fourier-Sine Series of $f(x)=2 \sin 4 x-11 \sin 17 x$ equals itself! On the other hand if $f(x)=\cos x$ and even if $f(x)=1$, you would have to do it the long way, using the formulas.

Dr. Z.'s Way of Solving the Heat Equation

1. Both ends are at temperature 0: (General interval $(0, L)$)

The solution of

$$
k \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t} \quad, \quad 0<x<L \quad, \quad t>0
$$

subject to

$$
\begin{gathered}
u(0, t)=0 \quad, \quad u(L, t)=0 \quad, \quad t>0 \\
u(x, 0)=f(x) \quad, \quad 0<x<L .
\end{gathered}
$$

Instead of using the stupid formula, remember that the building block solutions are $u(x, t)=$ $e^{-k\left(n^{2} \pi^{2} / L^{2}\right) t} \sin \frac{n \pi}{L} x$. For this function, $u(x, 0)=\sin \frac{n \pi}{L} x$ so if you are lucky and the initial condition function $f(x)$ is a multiple of $\sin \frac{n \pi}{L} x$, for some specific integer n, then all you have to do, to get the solution $u(x, t)$ is to stick $e^{-k\left(n^{2} \pi^{2} / L^{2}\right) t}$ in front of it! If it is a combination of $\sin \frac{n \pi}{L} x$ for various n 's just stick the appropriate $e^{-k\left(n^{2} \pi^{2} / L^{2}\right) t}$ (for the appropriate n) to each term.

Example: Solve the pde

$$
5 \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t} \quad, \quad 0<x<\pi \quad, \quad t>0
$$

subject to

$$
\begin{array}{r}
u(0, t)=0 \quad, \quad u(\pi, t)=0 \quad, \quad t>0 \\
u(x, 0)=5 \sin (3 x)-8 \sin (7 x) \quad, \quad 0<x<\pi
\end{array}
$$

Sol. Here $k=5$, we first copy-and-paste $f(x)$, and leave some room, as follows:

$$
u(x, t)=5(\text { ComingUpShortly } 1) \sin (3 x)-8(\text { ComingUpShortly } 2) \sin (7 x) \quad(\text { NotYetFinished })
$$

ComingUpShortly 1 is simply $e^{-k\left(n^{2} \pi^{2} / L^{2}\right) t}$ with $k=5, n=3$ and $L=\pi$, i.e.

$$
\text { ComingUpShortly } 1=e^{-5\left(3^{2}\left(\pi^{2} / \pi^{2}\right) t\right.}=e^{-45 t}
$$

Similarly ComingUpShortly 2 is simply $e^{-k\left(n^{2} \pi^{2} / L^{2}\right) t}$ with $k=5, n=7$ and $L=\pi$, i.e.

$$
\text { ComingUpShortly } 2=e^{-5\left(7^{2}\left(\pi^{2} / \pi^{2}\right) t\right)}=e^{-245 t} .
$$

Going back to (NotYetFinished)

$$
u(x, t)=5 e^{-45 t} \sin (3 x)-8 e^{-245 t} \sin (7 x)
$$

(Finished)

If however, the $f(x)$ of the problem is not a pure sine-wave or a finite combination of them, for example $u(x, 0)=x$ or $u(x, 0)=\cos x$, then you have to find the Half-Range Fourier Sine Expansion, as above, get a \sum,

$$
u(x, 0)=f(x)=\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi}{L} x
$$

and do exactly the same procedure as above! Stick $e^{-k\left(n^{2} \pi^{2} / L^{2}\right) t}$ between A_{n} and $\sin \frac{n \pi}{L} x$, to get the answer:

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} e^{-k\left(n^{2} \pi^{2} / L^{2}\right) t} \sin \frac{n \pi}{L} x
$$

Note that now n is a general symbol, so you leave it alone! You only plug-in the numerical values of L (often $L=\pi$, the easiest case), and k.

2. Both ends are insulated

Things are exactly analogous, but now you use the Fourier-Cosine Half-Range expansion, and stick the $e^{-k\left(n^{2} \pi^{2} / L^{2}\right) t}$ between A_{n} and $\cos \frac{n \pi}{L} x$.
(Note, in many problems things simplify since $L=\pi$). Of course if the initial-condition function is already a combination of pure-cosines, you leave it alone, and do the "sticking" as above.

Wave Equation (Special case: $L=\pi$)
To find the solution of the boundary value wave equation

$$
\begin{array}{r}
a^{2} u_{x x}=u_{t t} \quad, \quad 0<x<\pi \quad, \quad t>0 \\
u(0, t)=0 \quad, \quad u(\pi, t)=0 \quad, \quad t>0 \quad ; \\
u(x, 0)=f(x) \quad, \quad u_{t}(x, 0)=g(x) \quad, \quad 0<x<\pi .
\end{array}
$$

Step 1. Find the Fourier Sine Expansion of $f(x)$ and the Fourier Sine Expansion of $g(x)$, writing

$$
\begin{aligned}
& f(x)=\sum_{n=1}^{\infty} a_{n} \sin n x \\
& g(x)=\sum_{n=1}^{\infty} b_{n} \sin n x
\end{aligned}
$$

For some numbers a_{n} and b_{n} (or expressions in n).
Important note: If $f(x)$ and $g(x)$ are already in that format, but there are only finitely many terms, leave them alone, you don't have to do anything!

To get the answer $u(x, t)$ you first write, tentatively

$$
u(x, t)=\sum_{n=1}^{\infty} a_{n}(\text { ComingUpShortly } 1) \sin n x+\sum_{n=1}^{\infty} b_{n}(\text { ComingUpShortly } 2) \sin n x
$$

(NotYetDone)
Now for each n,

$$
\text { ComingUpShortly } 1=\cos (n a t)
$$

$$
\text { ComingUpShortly } 2=\frac{\sin (n a t)}{n a}
$$

If you are lucky, and both $f(x)$ and $g(x)$ are finite combinations of pure sine-waves (or a single sinewave), then you do it to the finite expression. Much faster than blindly following formulas.

Example: Find the solution of the boundary value wave equation

$$
\begin{array}{r}
36 u_{x x}=u_{t t} \quad, \quad 0<x<\pi \quad, \quad t>0 \quad ; \\
u(0, t)=0 \quad, \quad u(\pi, t)=0 \quad, \quad t>0 \quad ; \\
u(x, 0)=\sin 3 x \quad, \quad u_{t}(x, 0)=2 \sin 4 x+6 \sin 7 x \quad, \quad 0<x<\pi
\end{array}
$$

Sol. Here $a=6$.
$u(x, t)=($ ComingUpShortly 1$) \sin 3 x+2($ CmoingUpShortly $2 a) \sin 4 x+6($ CmoingUpShortly $2 b) \sin 7 x$.
(NotYetDone)
ComingUpShortly $1=\cos (3 \cdot 6 t)=\cos 18 t$
(since now $n=3$ and $a=6$.)

$$
\text { ComingUpShortly } 2 a=\frac{\sin (4 \cdot 6 t)}{4 \cdot 6}=\frac{\sin (24 t)}{24} .
$$

(since now $n=4$ and of course $a=6$.)

$$
\text { ComingUpShortly } 2 b=\frac{\sin (7 \cdot 6 t)}{7 \cdot 6}=\frac{\sin (42 t)}{42}
$$

(since now $n=7$ and of course $a=6$.) Going back to (NotYetDone), we get that the answer is:

$$
u(x, t)=(\cos 18 t)(\sin 3 x)+2\left(\frac{\sin (24 t)}{24}\right)(\sin 4 x)+6\left(\frac{\sin (42 t)}{42}\right)(\sin 7 x) . \quad \text { (AlmostDone) }
$$

Now you just clean up to get:

$$
\begin{equation*}
u(x, t)=\cos 18 t \sin 3 x+\frac{\sin 24 t \sin 4 x}{12}+\frac{\sin (42 t) \sin 7 x}{7} \tag{Done}
\end{equation*}
$$

Laplace's Equation in a Rectangle $u_{x x}+u_{y y}=0$ (The Hardest Topic in this semester !)
The catalog of the building blocks obtained once and for all from the technique called separation of variables are

$$
\cos \lambda x \cosh (\lambda y) \quad, \quad \cos \lambda x \sinh (\lambda y) \quad, \quad \sin \lambda x \cosh (\lambda y) \quad, \quad \sin \lambda x \sinh (\lambda y)
$$

and

$$
\cosh \lambda x \cos (\lambda y) \quad, \quad \cosh \lambda x \sin (\lambda y) \quad, \quad \sinh \lambda x \cos (\lambda y) \quad, \quad \sinh \lambda x \sin (\lambda y)
$$

Here λ is any real number.
Given a complicated boundary value problem, you use the boundary superposition principle to break them up into easier problems, where three of the four sides are set to 0 and only one side is non-zero. Then step-by-step you kick out those functions that do not meet the conditions $u(x, 0)=0$ and $u(0, y)=0$. Then λ gets narrowed-down to integer n (or some multiple of n if the x-side does not have length π). Then you write down the infinite linear combination for $u(x, y)$, and use the only non-zero boundary condition to plug-in, get some Fourier-Sine or Fourier-Cosine Expansion, as the case may be, and compare it to the function given as the last side's boundary condition. If you are lucky and it is already expessible as a finite combination (or just a pure sineor cosine- wave), then you do the same trick as above. Otherwise, you find the Fourier-Sine or Fourier-Cosine and do analogous things.

Laplace's Equation in a Circle (in Polar) $u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0$. (A Piece Of Cake!)
To find the steady-state temperature in a circle of radius c where $u(c, \theta)=f(\theta)$.

Step 1:

Find the full Fourier series of $f(\theta)$

$$
f(\theta)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n \theta+\sum_{n=1}^{\infty} b_{n} \sin n \theta
$$

Warning: If you are lucky and the given function $f(\theta)$ is a a pure sine-wave or a pure cosine-way, or a finite linear combination of these, you do nothing! Leave it alone.

Step 2: Stick $(r / c)^{n}$ between a_{n} and $\cos n \theta$ (if applicable) and Stick $(r / c)^{n}$ between b_{n} and $\sin n \theta$ (if applicable). That's it! Getting

$$
u(r, \theta)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n}(r / c)^{n} \cos n \theta+\sum_{n=1}^{\infty} b_{n}(r / c)^{n} \sin n \theta
$$

Example of the lucky case: Find the steady-state temperature in a circle of radius 5 if the temperature in the circumference $r=5$ is given by $u(5, \theta)=5+\sin 3 \theta-3 \cos 8 \theta$.

Sol.

$$
u(r, \theta)=5+(\text { ComingUpShortly } 1) \sin 3 \theta-3(\text { ComingUpShortly } 2) \cos 8 \theta
$$

(NotYetDone)
ComingUpShorly 1 is $(r / 5)^{3}$ and ComingUpShorly 2 is $(r / 5)^{8}$ and the answer is:

$$
\begin{equation*}
u(r, \theta)=5+(r / 5)^{3} \sin 3 \theta-3(r / 5)^{8} \cos 8 \theta \tag{Done}
\end{equation*}
$$

That's it!

WARNING: That's it! The answer, $u(r, \theta)$, is a function of the variables r and $\theta . r$ is NOT $5, c$ is 5 . Do not "simplify" the answer and plug-in at the end $r=5$. You would get no credit, since this is nonsense (or rather you would get $f(\theta)$ back, so it is a good check, but it is not the answer).

