
Dr. Z.’s Calc5 Last Handout and SCC Problems : The Art of Checking Your Answer and Avoiding Nonsense

By Doron Zeilberger

Note: The exercises here are mandatory for members of the SCC II. There are strongly recom-
mended to everyone!

Avoid Grammatically Incorrect Answers

Everyone makes mistakes (myself included) but if the answer is gibberish, then it means that you
don’t understand the language of Mathematics, and you are just faking it, trying to follow the
steps, but not having any clue what it means.

You must understand the meaning of notation. We often see the
∑

symbol, for example, in
Lecture 8 we had the following

Problem 8.1: Find the Fourier series of

f(x) =
{

1, if −π < x < 0;
−3, if 0 ≤ x < π.

and the answer was

f(x) = −1 +
∞∑

n=1

4((−1)n − 1)
πn

sinnx .

This is just shorthand for

−1 +
4((−1)1 − 1)

π(1)
sinx +

4((−1)2 − 1)
π2

sin 2x +
4((−1)3 − 1)

π3
sin 3x +

4((−1)4 − 1)
π4

sin 4x + . . .

= −1− 8
π

sinx− 8
π3

sin 3x + . . . .

So if we plug-in any numerical value into this infinite series we get a convergent series that converges
to the value of f(x). For example, if x = .5 we should get 1, and if x = .8 we should get −3.

In practice, of course, we can’t compute infinitely many terms, so our computer finds for us the
sum of the first 1000 (or whatever) terms, and we get a good approximation. Since in science there
is always experimental error, this is good enough for all practical purposes.

Do right now!

1. Spell out the first 5 terms in the following
∑

-s continued by . . .

[Note added Dec. 11, 2011: I thank Chris Farina for correcting a typo in the previous version,
that started at n = 0, and of course the answer to the original question (when the summation
started with n = 0) was “undefined”.]
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(a)
∞∑

n=1

1
πn3

cos nx ,

2. Spell out the first 4 terms in the following
∑

-s continued by . . .

(b)
∞∑

n=1

(−1)n

πn2
sinnx e−n2t ,

Checking Solutions of Algebraic Equations

Any algebraic equation is a puzzle. For example the quadratic equation:

x2 − 3x + 2 = 0

asks for a number such that you if you take its square, subtract 3 times itself and add 2, you would
get the number 0.

Quadratic equations are easy to solve, but higher degree ones are either hard or impossible. But
to check that a proposed solution of an algebraic equation is indeed a solution, all you have to do
is plug-it-in.

For example, to check that x = 2 is indeed a solution of the above equation, we replace x by 2 and
check whether

22 − 3(2) + 2 = 0

Since 4− 6 + 2 = 0, this is true!

Do Right now

3. Check that x = 2 is a solution of the algebraic equation x5 − x2 − 28 = 0.

4. Check that x = 2, y = 1, z = 3 is a solution of the system of algebraic equations

x + y − z = 0 , x− y + z = 4 , 2x + y + 3z = 14 .

Checking Answers to ODEs

An ordinary differential equation (ode for short) is also a puzzle, but now the answers are functions!
It may happen that the answer looks like a number, for example y(t) = 4, but this is an illusion.
In this context 4 means the constant function that is always equal to 4.

For example, the ode, plus the initial conditions

y′′(t)− 3y′(t) + 2y(t) = 2t− 3 , y(0) = 2 , y′(0) = 4 .
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That you are can do either by calc4 methods, or using the Laplace Transform, is a puzzle. In
English it means:

“I am a function of t. My second derivative minus three times my first derivative plus myself equal
to the function t − 3. Not only that, when t = 0, my value happens to be 2 and the value of my
derivative when t = 0 equals 4. Who am I?”

It takes me about ten minutes to solve this, and it may take you even longer (but it takes Maple
less than a second). The answer turns out to be

y(t) = et + e2t + t .

But to check whether this answer is correct, is much faster. Plug-it in!.

First we need to find y′(t) and y′′(t):

y′(t) = et + 2e2t + 1 .

y′′(t) = et + 4e2t .

Plugging these into the ode:

et + 4e2t− 3(et + 2e2t + 1) + 2(et + e2t + t) = et + 4e2t− 3et− 6e2t− 3 + 2et + 2e2t + 2t = 2t− 3 .

So the ode works out! Now we plug-in the initial conditions.

y(0) = e0 + e2·0 + 0 = 1 + 1 + 0 = 2 .

y′(0) = e0 + 2e2·0 + 1 = 1 + 2 + 1 = 4 .

So I didn’t lie, and the proposed solution of the IVP ode above is correct.

Do Right Now

5. Find out whether y(t) = e2t + et is a solution of the following IVP ode:

y′′ − 3y′ + 2y = 0 , y(0) = 2 , y′(0) = 3 .

6. Find out whether y(t) = e−t + et + e2t is a solution of the following IVP ode:

y′′ − y = 3e2t , y(0) = 1 , y′(0) = 2 .

7. Find out whether the functions x(t) = et + e2t , y(t) = et− e2t solve the following system of two
odes with IVPs.

d2x

dt2
=

5
2
x− 3

2
y
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d2y

dt2
= −3

2
x +

5
2
y

x(0) = 2 , x′(0) = 3 ; y(0) = 0 , y′(0) = −1 .

Checking Answers to PDEs

A partial differential equation is also a puzzle, but now you are looking for a multi-variable function
(in this course, we only focus on functions of two variables, lucky you!).

For example the following Boundary Value Problem PDE

uxx + uyy = 0 , (0 < x < 1 , 0 < y < 2) ,

u(x, 0) = x2 (0 < x < 1) , u(x, 2) = x2 − 4 (0 < x < 1) ,

u(0, y) = −y2 (0 < y < 2) , u(1, y) = 1− y2 (0 < y < 2) .

This is a very hard problem to solve by the techniques we learned in this class. First we need to
use the principle of superposition to break it up into four simpler boundary value problems. Then
we would need to find which of the building blocks (out of the eight options) is applicable in each
case, then we would need to find Fourier Sine or Cosine (as the case may be) Expansions for the
non-zero boundary function for each case, get the answer to each individual problem, and at the
very end, add them up! This i so complicated to do by hand, that you won’t be asked to solve
such a pde. But if I tell you to check that a proposed solution is indeed a solution, all you have
to do it plug-it in.

I claim that u(x, y) = x2 − y2 is a solution.

Indeed:
uxx = 2 , uyy = −2.

So uxx + uyy = 0, and the pde is OK!

Also
u(x, 0) = x2 − 02 = x2 (ok!) , u(x, 2) = x2 − 22 = x2 − 4 (ok!) .

u(0, y) = 02 − y2 = −y2 (ok!) , u(1, y) = 12 − y2 = 1− y2 (ok!) .

Do Right Now

8. Check whether u(x, y) = x3y−xy3 +2x2− 2y2 +x is a solution of the following boundary value
problem pde.

uxx + uyy = 0 , (0 < x < 1 , 0 < y < 2) ,

u(x, 0) = 2x2 + x (0 < x < 1) , u(x, 2) = 2x3 + 2x2 − 7x− 8 (0 < x < 1) ,
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u(0, y) = −2y2 (0 < y < 2) , u(1, y) = −y3 − 2y2 + y + 3 (0 < x < 1) .

9. Check whether u(x, t) = cos 3t sin 3x + 1
4 sin 4t sin 4x is a solution of the pde

uxx = utt , 0 < x < π , t > 0 ;

subject to the boundary conditions

u(0, t) = 0 , u(π, t) = 0 , t > 0 ;

and the initial conditions

u(x, 0) = sin 3x , ut(x, 0) = sin 4x , 0 < x < π .

10. Check whether u(x, t) = 10 cos t sinx + 2
3 sin 3t sin 3x is a solution of the pde

uxx = utt , 0 < x < π , t > 0 ;

subject to the boundary conditions

u(0, t) = 0 , u(π, t) = 0 , t > 0 ;

and the initial conditions

u(x, 0) = 10 sinx , ut(x, 0) = 2 sin 3x , 0 < x < π .

11. Recall that Laplace’s Equation in Polar coordinates is this(
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2

)
u(r, θ) = 0 .

a.. Check that u(r, θ) = r5 cos 5θ is a solution of this pde.

b.. Check that u(r, θ) = r−3 sin 3θ is a solution of this pde.

c.. Check that for every integer n, positive or negative u(r, θ) = rn sinnθ is a solution of this pde.

d.. Check that for every integer n, positive or negative u(r, θ) = rn cos nθ is a solution of this pde.

Series and Integral Representations

Most functions are random functions, that can only be given numerically, in terms of a table or chart.
But some functions can be described most succinctly by an algebraic, trig, or exponential expression.
For example, the function f(x) = x3 tells you that in order to find the output for any possible
input, all you have to do is raise it to the third power. The function f(x) = ex3 sin x cos(sinx2) may
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look complicated, but it is still better than just a table. For any input, to get the output, all you
have to do is plug-it-in.

In applications sometimes functions are given in terms of a series representation, the most famous
examples, being Maclaurin series, for example

sinx = x− x3

6
+

x5

120
− x7

720
+ . . .

that gives it in terms of an infinite series. In practice (a computer) only uses the first one thousand
terms (and often only ten!), and gets a very good approximation (the error is so small that it does
not show up in the ten-digit display of the calculator).

This same infinite series for sinx can also be written in
∑

-notation

sinx =
∞∑

n=0

(−1)n

(2n + 1)!
xn ,

and computers and calculators replace the ∞ by 1000 or whatever.

In the case of Maclaurin series the “atomic” functions are the powers x, x2, x3 . . ..

In the case of Fourier-Series representation, the atomic functions are sinnx and cos nx, for functions
defined on (−π, π). For the general symmetric interval (−L,L), we have the more complicated-
looking “atoms”:

sin(n
π

L
x) , cos(n

π

L
x) .

The general format is, for the simpler case of (−π, π):

f(x) =
a0

2
+

∞∑
n=1

an cos nx +
∞∑

n=1

bn cos nx

For some numbers an, bn given by the formulas in Lecture 8. Here they are:

a0 :=
1
π

∫ π

−π

f(x) dx ,

and the numbers a1, a2, a3, . . . and b1, b2, b3, . . . are given by:

an =
1
π

∫ π

−π

f(x) cos nx dx

bn =
1
π

∫ π

−π

f(x) sinnx dx

In real life (as opposed to the artificial problems that you get as homework), f(x) is usually
only given numerically by some equipment interfaced with a computer (like every piece of equip-
ment is nowadays, they are all “smart”). Then the computer computes the numbers a0, a1, a2, . . .,
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b1, b2, b3, . . . using numerical integration, getting some concrete numbers. Of course, it can’t do it
for infinitely many of them, so it does it for the first one thousand coefficients, and this is good
enough for all practical purposes.

If the function f(x) is given explicitly by some formula, for example f(x) = ex then using Calc2
stuff it is sometimes possible to find “all” the coefficients an, bn by deriving an explicit expression
in n, but this is the exception to the rule. For many functions, for example f(x) = ex3

, not even
Maple can do it, and once again we do it numerically and only compute the first one thousand
coefficients or whatever.

Finally, some functions are given via an integral representation. For example, the function

f(x) =
∫ ∞

−∞
cos(xy2)e−y4

dy .

There is no way to find an “explicit” expression for f(x) as an expression of x, but for practical
purposes it is useful. For any input x, for example, x = 2, we plug-in x = 2 into the integral getting

f(2) =
∫ ∞

−∞
cos(2y2)e−y4

dy ,

that no one knows how to do “exactly” but using numerical techniques for doing integrals, you can
get a numerical answers. By doing it for x = 0, 0.01, 0.02, 0.03 . . . , 10000, the computer can plot
f(x) very accurately.

Note that Integral Representations are very confusing. In the integral∫ ∞

−∞
cos(xy2)e−y4

dy ,

two letters show up, x and y. The boss is y. It is the integration variable, because we have dy.
The letter x is conceptually a mere number, that’s why it is called a parameter.

The most famous Integral Representation is the Fourier-Integral Representation.

The Fourier Integral Representation of a function f(x) defined on the real line (−∞,∞) is
given by

f(x) =
1
π

∫ ∞

0

[A(α) cos αx + B(α) sinαx ] dα ,

here α is the variable of integration and x is the parameter. The functions A(α) and B(α) are also
given by integrals: where

A(α) =
∫ ∞

−∞
f(x) cos αx dx ,

B(α) =
∫ ∞

−∞
f(x) sinαx dx .

Now x is the variable of integration and α is the parameter.
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Avoiding Gibberish

Here is an examples of gibberish. For a solution of a wave-equation problem, one student had

u(x, t) = cos x sin 3t sinnt .

n has no place here! n can only show up in solutions that have
∑∞

n=1 in front of them, and then it
means that we have to add-up the terms for n = 1, n = 2, n = 3 for ever after. But please don’t
have a disembodied sin nt. If you do, you will get zero points, since gibberish answers are worse
than no answer, and even worse than the wrong answer.
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