
Dr. Z.’s Calc5 Cheatsheet

FINAL VERSION

[Note: This is the only sheet allowed in any of the quizzes and exams. No calculators of course!]

Version of Dec. 12 ,2011 (adding Euler’s fromula eiz = cos z + i sin z and cos z = eiz+e−iz

2 ,
sin z = eiz−e−iz

2i ).

Previous Versions: Sept. 15, 2011: correcting errors in page 3, lines 9 and 10, last formula Oct.
12,2011: Adding two more useful trig. identities. Nov. 20 ,2011: (thanks to Eric Somers, correcting
two typos in the trig identities). Nov. 22 ,2011 (thanks to Dr. Z, correcting typos in lines 3 and 4
of page 2)

Calc(-1) Reminders: The roots of ax2 + bx + c = 0 are (−b±
√

b2 − 4ac)/2a .

Calc0 Reminders:

sin2 x+cos2 x = 1 , sin(x+y) = sin x cos y+cos x sin y , cos(x+y) = cos x cos y−sinx sin y ,

cos 2x = cos2 x−sin2 x , sin 2x = 2 sin x cos x , cos2 x =
1 + cos 2x

2
, sin2 x =

1− cos 2x

2
.

cos A cos B =
1
2
(cos(A−B) + cos(A + B)) , sinA sinB =

1
2
(cos(A−B)− cos(A + B)) .

If n is an integer:

sinnπ = 0 , cos nπ = (−1)n , sin(n +
1
2
)π = (−1)n , cos(n +

1
2
)π = 0 .

Calc1 Reminders: (fg)′ = f ′g + fg′, ( f
g )′ = f ′g−fg′

g2 , (f(g(x)))′ = f ′(g(x))g′(x).
(xn)′ = nxn−1, (ex)′ = ex, (sinx)′ = cos x, (cos x)′ = − sinx, (lnx)′ = 1

x .

Calc2 Reminders:
∫

uv′ = uv −
∫

u′v, f(x) =
∑∞

n=0
f(n)(a)

n! (x− a)n, f(x) =
∑∞

n=0
f(n)(0)

n! xn,∫
ecx dx = ecx

c + C (if c 6= 0),
∫

sin(cx) dx = − cos(cx)
c + C,

∫
cos(cx) dx = sin(cx)

c + C, (if c 6= 0),∫
1

x−adx = ln |x− a|+ C.

ex = 1 + x +
x2

2
+ . . . +

xn

n!
+ . . . .

cos x = 1− x2

2
+ . . . + (−1)n x2n

(2n)!
+ . . . .

sinx = x− x3

6
+ . . . + (−1)n x2n+1

(2n + 1)!
+ . . . .

(1 + x)a = 1 + ax +
a(a− 1)

2
x2 + . . . +

a(a− 1) · · · (a− n + 1)
n!

xn + . . . .
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ln(1 + x) = x− x2

2
+

x3

3
+ . . . + (−1)n+1 xn

n
+ . . . .

∫
xecx dx =

(−1 + cx) ecx

c2
+ C .

∫
x2ecx dx =

(
2− 2 cx + x2c2

)
ecx

c3
+ C .∫

xnecx dx =
xnecx

c
− n

c

∫
xn−1ecx dx .∫ ∞

0

xne−x dx = n! (n positive integer) .

∫
ebx sin(ax) dx = −a

cos (ax) ebx

b2 + a2
+ b

sin (ax) ebx

b2 + a2
.

∫
ebx cos(ax) dx =

b cos (ax) ebx

b2 + a2
+ a

sin (ax) ebx

b2 + a2
.

∫
x cos(ax) dx =

cos (ax) + x sin (ax) a

a2
.

∫
x sin(ax) dx =

sin (ax)− x cos (ax) a

a2
.

∫
xn sin(ax) dx = −xn cos ax

a
+

n

a

∫
xn−1 cos ax dx .

∫
xn cos(ax) dx =

xn sin ax

a
− n

a

∫
xn−1 sin ax dx .∫ ∞

0

xne−x dx = n! .

Polar → Rectangular: x = r cos θ, y = r sin θ; Rectangular → Polar: r =
√

x2 + y2, θ = tan−1 y
x .

Calc3 Reminders: (fx)y = (fy)x, grad f =< fx, fy, fz >, div < F1, F2, F3 >= (F1)x + (F2)y +
(F3)z, curl < F1, F2, F3 >=< (F3)y − (F2)z, (F1)z − (F3)x, (F2)x − (F1)y >.

Calc4 Reminders:

The general solution of ay′′(x) + by′(x) + cy(x) = 0 (a, b, c real numbers) is y(x) = Aeαx + Beβx if
α, β are roots of ar2 + br + c = 0 and they are real and distinct. If α = β then the general solution
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is y(x) = Aeαx + Bxeαx. If they are complex, µ± iλ then it is y(x) = eµx(A cos λx + B sinλx). In
particular, the general solution of y′′(x) + λ2y(x) = 0 is y(x) = A cos λx + B sinλx.

The general solution of y′′(x)−λ2y(x) = 0 may be written either as Aeλx+Be−λx or as A coshλx+
B sinhλx.

The Cauchy-Euler differential equation

r2R′′(r) + rR′(r)− n2R(r) = 0 ,

has the general solution
R(r) = C1r

n + C2r
−n ,

when n > 0. When n = 0, the general solution is R(r) = C1 + C2 ln r.

eiz = cos z + i sin z, cos z = eiz+e−iz

2 , sin z = eiz−e−iz

2i .

Laplace Transform

F (s) =
∫ ∞

0

f(t)e−ts dt ,

L{1} =
1
s

, L{tk} =
k!

sk+1
(k = 1, 2, 3, ...) , L{eat} =

1
s− a

,

L{sin kt} =
k

s2 + k2
, L{cos kt} =

s

s2 + k2
, L{sinh kt} =

k

s2 − k2
, L{cosh kt} =

s

s2 − k2
.

L−1{1
s
} = 1 , L−1{ 1

sk
} =

tk−1

(k − 1)!
(k = 1, 2, 3, ...) , L−1{ 1

s− a
} = eat ,

L−1{ 1
s2 + k2

} =
sin kt

k
, L−1{ s

s2 + k2
} = cos kt , L−1{ 1

s2 − k2
} =

sinh kt

k
, L−1{ s

s2 − k2
} = cosh kt .

L{y(t)} = Y (s) , L{y′(t)} = sY (s)−y(0) , L{y′′(t)} = s(sY (s)−y(0))−y′(0) = s2Y (s)−sy(0)−y′(0) . . .

L{y(n)(t)} = snY (s)− sn−1y(0)− sn−2y′(0)− . . .− y(n−1)(0) .

L{eatf(t)} = F (s− a) , L−1{F (s− a)} = eatf(t)

L{tkeat} =
k!

(s− a)k+1
(k = 1, 2, 3, ...) , L{eat sin kt} =

k

(s− a)2 + k2
, L{eat cos kt} =

s− a

(s− a)2 + k2
.

L−1{ 1
(s− a)k

} =
tk−1eat

(k − 1)!
(k = 1, 2, 3, ...) , L−1{ 1

(s− a)2 + k2
} =

eat sin kt

k
, L−1{ s− a

(s− a)2 + k2
} = eat cos kt .

L{f(t− a)U(t− a)} = e−asF (s) (if a > 0) .

L−1{e−asF (s)} = f(t− a)U(t− a) (if a > 0) .

L{tnf(t)} = (−1)n dn

dsn
F (s) (n pos. integer).
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(f ∗ g)(t) =
∫ t

0

f(τ)g(t− τ) dτ .

L{f ∗ g} = L{f(t)}L{g(t)} = F (s)G(s) .

L−1(F (s)G(s) = (f ∗ g)(t) .

L{
∫ t

0

f(τ) dτ} =
F (s)

s
,

L−1{F (s)
s

} =
∫ t

0

f(τ) dτ

L{δ(t− t0)} = e−st0 .

L{δ(t)} = 1 .

Orthogonal Functions

Two functions f(x) and g(x) defined on an interval [a, b] are orthogonal with respect to the
weight function w(x) if ∫ b

a

f(x)g(x) w(x)dx = 0 .

A set of functions φ1(x), φ2(x), φ3(x), . . . is an orthogonal set over [a, b] with respect to the weight
function w(x) if the φi’s are all orthogonal to each other, with respect to w(x). In other words∫ b

a

φm(x)φn(x) w(x)dx = 0 whenver m 6= n .

The inner-product of two functions (f(x), g(x)) over [a, b] with respect to the weight function
w(x) is

(f, g)w =
∫ b

a

f(x)g(x) w(x)dx .

The norm-squared of a function f(x) on an interval [a, b] with respect to the weight-function
w(x) is

||f ||2w = (f, f)w =
∫ b

a

f(x)2 w(x)dx .

A set of functions φ1(x), φ2(x), φ3(x), . . . is orthonormal over [a, b] with respect to the weight-
function w(x) if it is orthogonal and the norms are all equal to 1.

Fourier Series (over (−π, π))

If a function f(x) is defined over the interval (−π, π), then its Fourier series is

a0

2
+

∞∑
n=1

an cos nx +
∞∑

n=1

bn sinnx ,
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where the number a0 is given

a0 :=
1
π

∫ π

−π

f(x) dx ,

and the numbers a1, a2, a3, . . . and b1, b2, b3, . . . are given by:

an =
1
π

∫ π

−π

f(x) cos nx dx ,

bn =
1
π

∫ π

−π

f(x) sinnx dx .

Fourier Series (over (−L,L)) find the function g(x) = f(xL/π), that is defined over (−π, π), and
then go back using f(x) = g(xπ/L).

A function f(x) is even if
f(−x) = f(x) .

A function f(x) is odd if
f(−x) = −f(x) .

If f(x) is even then
∫ a

−a
f(x) dx = 2

∫ a

0
f(x) dx.

If f(x) is odd then
∫ a

−a
f(x) dx = 0.

Fourier Cosine Series (for Even Functions)

The Fourier series of an even function f(x) on the interval (−π, π) is the cosine series (no sines
show up!)

a0

2
+

∞∑
n=1

an cos nx ,

where
a0 =

2
π

∫ π

0

f(x) dx ,

an =
2
π

∫ π

0

f(x) cos nx dx .

Fourier Sine Series (for Odd Functions) The Fourier series of an odd function f(x) on the
interval (−π, π) is the sine series (no cosines show up!)

∞∑
n=1

bn sinnx ,

where
bn =

2
π

∫ π

0

f(x) sinnx dx .

Half Range Expansion If a function f(x) is only defined on (0, π), then we can extend it to
(−π, π) to either get an even function, and find its cosine series, or to an odd function and get
its sine series. Both of them are supposed to converge to f(x) in (0, π).

5



The complex Fourier series of a function f defined on the interval (−π, π) is given by

∞∑
n=−∞

cneinx ,

where
cn =

1
2π

∫ π

−π

f(x)e−inx dx , n = 0,±1,±2, . . . .

The complex Fourier series of a function f defined on a general interval (−p, p) is given by

∞∑
n=−∞

cneinπx/p ,

where
cn =

1
2p

∫ p

−p

f(x)e−inπx/p dx , n = 0,±1,±2, . . . .

Sturm-Liouville Problem

A Regular Sturm-Liouville Problem on an interval [a, b] is a differential equation of the
form

d

dx
[r(x)y′] + (q(x) + λp(x))y = 0 ,

subject to the boundary conditions

A1y(a) + B1y
′(a) = 0 ,

A2y(b) + B2y
′(b) = 0 .

Here p, q, r are continuous functions, and in addition r′(x) should also be continuous. Also we need
r(x) > 0 and p(x) > 0 on the interval [a, b].

Singular Sturm-Liouville Problem on an interval [a, b] is a differential equation of the above
form but the condition that r(x) > 0 in [a, b] is not always true, but then you only use some of the
boundary conditions.

For most λ’s there is no solution (except for the “trivial solution” y(x) = 0). Those lucky ones
for which there is a non-zero solution are called eigenvalues and the corresponding solutions are
called eigenfunctions.

Sturm-Liouville Theorem: 1. For a regular Sturm-Liouville problem there exist an infinite
number of eigenvalues

λ1 < λ2 < λ3 < . . .

such that λn →∞.
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2. Each eigenvalue λi has just one corresponding eigenfunction yi(x) (up to a constant multiple)

3. All the eigenfunctions are linearly independent. In other words, there is no way that you can
express one of them as a linear combination of other ones.

4. The eigenfunctions {yi(x)} are orthogonal over [a, b] with respect to the weight-function
p(x).

Fourier-Legendre Series

The Legendre polynomials {Pn(x)}∞n=0 are defined by the generating function

∞∑
n=0

Pn(x)tn = (1− 2xt + t2)−1/2 .

Another way to define them is via the recurrence

Pn(x) =
2n− 1

n
xPn−1(x)− n− 1

n
Pn−2(x) ,

subject to the initial values:
P0(x) = 1 P1(x) = x .

The Fourier-Legendre series of a function f(x) defined on the interval (−1, 1) is given by

f(x) =
∞∑

n=0

cnPn(x) ,

where

cn =
2n + 1

2

∫ 1

−1

f(x)Pn(x) dx .

Heat Equation

1. Both ends are at temperature 0:

The solution of

k
∂2u

∂x2
=

∂u

∂t
, 0 < x < L , t > 0

subject to
u(0, t) = 0 , u(L, t) = 0 , t > 0

u(x, 0) = f(x) , 0 < x < L ,

is

u(x, t) =
∞∑

n=1

Ane−k(n2π2/L2)t sin
nπ

L
x ,

where

An =
2
L

∫ L

0

f(x) sin
nπ

L
xdx .
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2. Both ends are insulated

The solution of

k
∂2u

∂x2
=

∂u

∂t
, 0 < x < L , t > 0

subject to
ux(0, t) = 0 , ux(L, t) = 0 , t > 0

u(x, 0) = f(x) , 0 < x < L ,

is

u(x, t) =
A0

2
+

∞∑
n=1

Ane−k(n2π2/L2)t cos
nπ

L
x ,

where

A0 =
2
L

∫ L

0

f(x) dx , An =
2
L

∫ L

0

f(x) cos
nπ

L
xdx .

Wave Equation (Special case: L = π)

The solution of the boundary value wave equation

a2uxx = utt , 0 < x < π , t > 0 ;

u(0, t) = 0 , u(π, t) = 0 , t > 0 ;

u(x, 0) = f(x) , ut(x, 0) = g(x) , 0 < x < π .

is

u(x, t) =
∞∑

n=1

(An cos(nat) + Bn sin(nat)) sin(nx) ,

where the numbers An and Bn are given by the formulas

An =
2
π

∫ π

0

f(x) sinnx dx ,

Bn =
2

nπa

∫ π

0

g(x) sinnx dx.

Wave Equation (General Case)

The solution of the boundary value wave equation

a2uxx = utt , 0 < x < L , t > 0 ;

u(0, t) = 0 , u(L, t) = 0 , t > 0 ;

u(x, 0) = f(x) , ut(x, 0) = g(x) , 0 < x < L .
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is

u(x, t) =
∞∑

n=1

(
An cos(

nπa

L
t) + Bn sin(

nπa

L
t)

)
sin(

nπ

L
x) ,

where the numbers An and Bn are given by the formulas

An =
2
L

∫ L

0

f(x) sin
nπ

L
xdx ,

Bn =
2

nπa

∫ L

0

g(x) sin
nπ

L
xdx.

Boundary Superposition Principle for the 2D Laplace’s Equation

If you have a complicated so-called Dirichlet boundary value problem

uxx + uyy = 0 , 0 < x < a , 0 < y < b ,

u(0, y) = F (y) , u(a, y) = G(y) , 0 < y < b .

u(x, 0) = f(x) , u(x, b) = g(x) , 0 < x < a .

You break-it up into two problems as follows.

First Problem: Find the solution, let’s call it u1(x, y) satisfying

(u1)xx + (u1)yy = 0 , 0 < x < a , 0 < y < b ,

u1(0, y) = 0 , u1(a, y) = 0 , 0 < y < b ,

u1(x, 0) = f(x) , u1(x, b) = g(x) , 0 < x < a .

Second Problem: Find the solution, let’s call it u2(x, y) satisfying

(u2)xx + (u2)yy = 0 , 0 < x < a , 0 < y < b ,

u2(0, y) = F (y) , u2(a, y) = G(y) , 0 < y < b ,

u2(x, 0) = 0 , u2(x, b) = 0 , 0 < x < a .

Once you solved these (already complicated!) two problems, the final solution, to the original
problem, is simply

u(x, y) = u1(x, y) + u2(x, y) .

In other words, just add them up!

Laplace’s Equation in Polar Coordinates
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The Laplacian Equation in two dimensions(
∂2

∂x2
+

∂2

∂y2

)
u(x, y) = 0 ,

phrased in the usual rectangular coordinates (x, y), becomes, in polar coordinates (r, θ),(
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2

)
u(r, θ) = 0 .

Laplace Transform for 2D PDEs:

If L{u(x, t)} = U(x, s), then

L{∂u

∂t
} = sU(x, s)− u(x, 0) ,

L{∂2u

∂t2
} = s2U(x, s)− su(x, 0)− ut(x, 0) .

L{∂u

∂x
} =

∂U(x, s)
∂x

L{∂2u

∂x2
} =

∂2U(x, s)
∂x2

Fourier Integral

The Fourier Integral of a function f(x) defined on the real line (−∞,∞) is given by

1
π

∫ ∞

0

[A(α) cos αx + B(α) sinαx ] dα ,

where

A(α) =
∫ ∞

−∞
f(x) cos αx dx

B(α) =
∫ ∞

−∞
f(x) sinαx dx

Fourier Transform:

F{f(x)} =
∫ ∞

−∞
f(x)eiαx dx = F (α) .

Inverse Fourier Transform:

F−1{F (α)} =
1
2π

∫ ∞

−∞
F (α)e−iαx dα = f(x) .
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Fourier Sine Transform:

Fs{f(x)} =
∫ ∞

0

f(x) sinαx dx = F (α) .

Inverse Fourier Sine Transform:

F−1
s {F (α)} =

2
π

∫ ∞

0

F (α) sinαx dα = f(x) .

Fourier Cosine Transform:

Fc{f(x)} =
∫ ∞

0

f(x) cos αx dx = F (α) .

Inverse Fourier Cosine Transform:

F−1
c {F (α)} =

2
π

∫ ∞

0

F (α) cos αx dα = f(x) .

If F{f(x)} = F (α) then for n = 1, 2, 3, . . ..

F{f (n)(x)} = (−iα)nF (α) .

If Fs{f(x)} = F (α) then
Fs{f ′′(x)} = −α2F (α) + αf(0) .

If Fc{f(x)} = F (α) then
Fc{f ′′(x)} = −α2F (α)− f ′(0) .

Euler’s method for Numerically solving a first-order ode

For the initial value problem

y′ = f(x, y) , y(x0) = y0 ,

with mesh-size h, you define

xn = x0 + nh , n = 0, 1, 2, . . . ,

and compute, one-step-at-a-time

yn = yn−1 + hf(xn−1, yn−1) , n = 1, 2 . . . .

yn is an approximation for y(xn). The smaller h, the better the approximation.
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The Improved Euler method for Numerically solving a first-order ode

To solve the initial value problem

y′ = f(x, y) , y(x0) = y0

with mesh-size h, you define

xn = x0 + nh , n = 0, 1, 2, . . . ,

and compute, one-step-at-a-time

y∗n = yn−1 + hf(xn−1, yn−1) ,

yn = yn−1 + h
f(xn−1, yn−1) + f(xn, y∗n)

2
, n = 1, 2 . . . .

Then yn is an approximation for y(xn). The smaller h, the better the approximation.

Fourth-Order Runge-Kutta (RK4)

To approximate solutions of
y′ = f(x, y) , y(x0) = y0 ,

at x1 = x0 + h, x2 = x0 + 2h, . . . , xn = x0 + nh do the following, starting at y0, for n = 1, 2, . . .

k1 = f(xn−1, yn−1)

k2 = f(xn−1 +
1
2
h, yn−1 +

1
2
hk1)

k3 = f(xn−1 +
1
2
h, yn−1 +

1
2
hk2)

k4 = f(xn−1 + h, yn−1 + hk3) ,

and finally

yn = yn−1 +
h

6
(k1 + 2k2 + 2k3 + k4) .

Discretization of PDEs

The discrete approximations of the second derivatives with mesh-size h are:

uxx ≈
1
h2

[u(x + h, y)− 2u(x, y) + u(x− h, y)] ,

uyy ≈
1
h2

[u(x, y + h)− 2u(x, y) + u(x, y − h)] .

Numerical Solution of 2D Laplacian Dirichlet problems
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The five-point approximation of the Laplacian uxx + uyy (in 2D) is

uxx + uyy ≈
1
h2

[u(x + h, y) + u(x, y + h) + u(x− h, y) + u(x, y − h)− 4u(x, y)]

To numerically (approximately) solve the Dirichlet problem uxx + uyy = 0 in a region D with
boundary condition u(x, y) = F (x, y) along the boundary with mesh-size h, you set ui,j =
u(ih, jh) and set-up a system of linear equation as follows.

For each (ih, jh) inside the region, you have an equation

ui+1,j + ui,j+1 + ui−1,j + ui,j−1 − 4ui,j = 0 ,

and for every boundary point
ui,j = F (ih, jh) .

Then do the linear algebra, and the solutions, {ui,j} would give you approximations for the values
of the “real thing” at the interior points {(ih, jh)}.
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