Dr. Z.’s Calcb5 Lecture 8 Handout: Fourier Series
By Doron Zeilberger

Important Defintion: If a function f(z) is defined over the interval (—m, ), then its Fourier
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where the number ag is given
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and the numbers a1, a9, as,... and by, bo, b3, ... are given by:
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Important Theorem: If f(z) and f’(z) are continuous on (—m, ) then the Fourier series of f(z)
converges to it.

Note: If f(x), f’(x) are only piece-wise continous then the Fourier series converges to f(z) at all
the good points, and at the “breaking-points” it converges to the average of the limit from the left
and the limit from the right.

Note: If the function f(z) is defined over an interval (—p,p) that is not (—m,7), you can still
define a Fourier series, but first you cosider g(z) = f(xp/w), find the Fourier series for g(x) and
then go back to f(z) by using f(z) = g(z7). At the end you would get an expansion in sin(“Fz)
and cos(“Fx).

Problem 8.1: Find the Fourier series of
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(Recall that sinnm = 0 for all integers n.)
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(Recall that cosnm = (—1)™ for all integers n.) Combining we get that the Fourier series of f(z) is
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Ans. to 8.1: The Fourier series is: —1+ ), W sinnx.
Problem 8.2: Find the Fourier series of f(x) = z on the interval (—2,2).

Solution. We consider g(z) = f(2£) = 2z that is defined on (-7, ).
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(since x cos nz is an odd function and the integration is symmetric (over (—a, a) for some a in this
case a = 7). Of course you can do it by parts the long way.)
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Going back to b,, we have
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Ans. to 8.2: The Fourier series of f(z) = z on the interval (—2,2) is > 7, 4(_717):“ sin(grx).



