Dr. Z.'s Calc5 Lecture 23 Handout: Numerical Solutions of Partial Differential Equations

By Doron Zeilberger

Important Definitions: Discretization

The discrete approximations of the second derivatives with mesh-size h are:

$$u_{xx} \approx \frac{1}{h^2} [u(x+h,y) - 2u(x,y) + u(x-h,y)]$$
,

$$u_{yy} \approx \frac{1}{h^2} [u(x, y+h) - 2u(x, y) + u(x, y-h)]$$
.

The five-point approximation of the Laplacian $u_{xx} + u_{yy}$ (in 2D) is

$$u_{xx} + u_{yy} \approx \frac{1}{h^2} [u(x+h,y) + u(x,y+h) + u(x-h,y) + u(x,y-h) - 4u(x,y)]$$

To numerically (approximately) solve the Dirichlet problem $u_{xx} + u_{yy} = 0$ in a region D with boundary condition u(x,y) = F(x,y) along the boundary with mesh-size h, you set $u_{i,j} = u(ih, jh)$ and set-up a system of linear equation as follows.

For each (ih, jh) inside the region, you have an equation

$$u_{i+1,j} + u_{i,j+1} + u_{i-1,j} + u_{i,j-1} - 4u_{i,j} = 0$$
,

and for every boundary point

$$u_{i,j} = F(ih, jh)$$
.

Then do the linear algebra, and the solutions, $\{u_{i,j}\}$ would give you approximations for the values of the "real thing" at the interior points $\{(ih, jh)\}$.

Problem 23.1: Approximate, with mesh-size h = 1, the solution of the boundary-value problem

$$u_{xx} + u_{yy} = 0$$
 , $0 < x < 3$, $0 < y < 3$;

subject to the boundary conditions

$$u(0,y) = 2y$$
 , $0 < y < 3$; $u(3,y) = -y$, $0 < y < 3$;

$$u(x,0) = -x$$
 , $0 < x < 3$; $u(x,3) = 2x$, $0 < x < 3$.

Solution: There are 12 points. 8 are on the boundary, and four are inside. The boundary points are

$$P_{10} = (1,0)$$
 , $P_{20} = (2,0)$,

$$P_{13} = (1,3)$$
 , $P_{23} = (2,3)$,

$$P_{01} = (0,1)$$
 , $P_{02} = (0,2)$, $P_{31} = (3,1)$, $P_{32} = (3,2)$.

 P_{10} and P_{20} are on y = 0, so using the data u(x, 0) = -x, 0 < x < 3, we get

$$u_{10} = u(P_{10}) = u(1,0) = -1$$
 , $u_{20} = u(P_{20}) = u(2,0) = -2$.

 P_{13} and P_{23} are on y = 3, so using the data u(x,3) = 2x, 0 < x < 3, we get

$$u_{13} = u(P_{13}) = u(1,3) = 2 \cdot 1 = 2$$
 , $u_{23} = u(P_{23}) = u(2,3) = 2 \cdot 2 = 4$.

 P_{01} and P_{02} are on x = 0, so using the data u(0, y) = 2y, 0 < y < 3, we get

$$u_{01} = u(P_{01}) = u(0,1) = 2 \cdot 1 = 2$$
 , $u_{02} = u(P_{02}) = u(0,2) = 2 \cdot 2 = 4$.

 P_{31} and P_{32} are on x=3, so using the data u(3,y)=-y , 0 < y < 3, we get

$$u_{31} = u(P_{31}) = u(3,1) = -1$$
 , $u_{32} = u(P_{32}) = u(3,2) = -2$.

Summarizing, we have the following data regarding the **boundary**

$$u_{10} = -1$$
 , $u_{20} = -2$, $u_{13} = 2$, $u_{23} = 4$,

$$u_{01} = 2$$
 , $u_{02} = 4$, $u_{31} = -1$, $u_{32} = -2$.

Regarding the **interior points** we have.

Point (1,1):

$$u_{1+1,1} + u_{1,1+1} + u_{1-1,1} + u_{1,1-1} - 4u_{1,1} = 0$$
 ,

meaning

$$u_{2,1} + u_{1,2} + u_{0,1} + u_{1,0} - 4u_{1,1} = 0$$
.

Point (2,1):

$$u_{2+1,1} + u_{2,1+1} + u_{2-1,1} + u_{1,2-1} - 4u_{2,1} = 0$$
,

meaning

$$u_{3,1} + u_{2,2} + u_{1,1} + u_{2,0} - 4u_{2,1} = 0$$
.

Point (1,2):

$$u_{1+1,2} + u_{1,2+1} + u_{1-1,2} + u_{1,2-1} - 4u_{1,2} = 0$$
,

meaning

$$u_{2,2} + u_{1,3} + u_{0,2} + u_{1,1} - 4u_{1,2} = 0$$
.

Point (2,2):

$$u_{2+1,2} + u_{2,2+1} + u_{2-1,2} + u_{2,2-1} - 4u_{2,2} = 0$$
,

meaning

$$u_{3,2} + u_{2,3} + u_{1,2} + u_{2,1} - 4u_{2,2} = 0$$
.

So we have the following four linear equations:

$$\begin{aligned} u_{2,1} + u_{1,2} + u_{0,1} + u_{1,0} - 4u_{1,1} &= 0 \quad , \\ u_{3,1} + u_{2,2} + u_{1,1} + u_{2,0} - 4u_{2,1} &= 0 \quad , \\ u_{2,2} + u_{1,3} + u_{0,2} + u_{1,1} - 4u_{1,2} &= 0 \quad , \\ u_{3,2} + u_{2,3} + u_{1,2} + u_{2,1} - 4u_{2,2} &= 0 \quad . \end{aligned}$$

Now we have to plug-in the known values for the boundary points, namely:

$$u_{10} = -1$$
 , $u_{20} = -2$, $u_{13} = 2$, $u_{23} = 4$,
 $u_{01} = 2$, $u_{02} = 4$, $u_{31} = -1$, $u_{32} = -2$.

Our system of linear equations for the unknowns $u_{1,1}, u_{2,1}, u_{1,2}, u_{2,2}$ becomes:

$$u_{2,1} + u_{1,2} + 2 + (-1) - 4u_{1,1} = 0 ,$$

$$(-1) + u_{2,2} + u_{1,1} + (-2) - 4u_{2,1} = 0 ,$$

$$u_{2,2} + (2) + (4) + u_{1,1} - 4u_{1,2} = 0 ,$$

$$-2 + 4 + u_{1,2} + u_{2,1} - 4u_{2,2} = 0 .$$

Moving all numbers to the right side, and writing each equation in the order $u_{1,1}, u_{2,1}, u_{1,2}, u_{2,2}$, we get the system:

$$-4u_{1,1} + u_{2,1} + u_{1,2} = -1 ,$$

$$u_{1,1} - 4u_{2,1} + u_{2,2} = 3 ,$$

$$u_{1,1} - 4u_{1,2} + u_{2,2} = -6 ,$$

$$u_{2,1} + u_{1,2} - 4u_{2,2} = -2 .$$

Or in matrix notation

$$\begin{pmatrix} -4 & 1 & 1 & 0 \\ 1 & -4 & 0 & 1 \\ 1 & 0 & -4 & 1 \\ 0 & 1 & 1 & -4 \end{pmatrix} \begin{pmatrix} u_{1,1} \\ u_{2,1} \\ u_{1,2} \\ u_{2,2} \end{pmatrix} = \begin{pmatrix} -1 \\ 3 \\ -6 \\ -2 \end{pmatrix} .$$

Solving this system, either by hand, using Gaussian elimination, or using *Matlab* or *Maple*, we get the solutions:

$$u_{11} = \frac{5}{8}$$
 , $u_{21} = -\frac{3}{8}$, $u_{12} = \frac{15}{8}$, $u_{22} = \frac{7}{8}$.

In other words, the approximations for the **interior points** are

Ans. to 23.1:

$$u(1,1) \approx \frac{5}{8} \quad , \quad u(2,1) \approx -\frac{3}{8} \quad , \quad u(1,2) \approx \frac{15}{8} \quad , \quad u(2,2) \approx \frac{7}{8} \quad .$$