Important Definition: The Fourier Transform and The Inverse Fourier Transform

Fourier Transform:
\[
\mathcal{F}\{f(x)\} = \int_{-\infty}^{\infty} f(x)e^{i\alpha x} \, dx = F(\alpha)
\]

Inverse Fourier Transform:
\[
\mathcal{F}^{-1}\{F(\alpha)\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\alpha)e^{-i\alpha x} \, d\alpha = f(x)
\]

Important Definitions: The Fourier Sine Transform and The Inverse Fourier Sine Transform

Fourier Sine Transform:
\[
\mathcal{F}_s\{f(x)\} = \int_{0}^{\infty} f(x)\sin\alpha x \, dx = F(\alpha)
\]

Inverse Fourier Sine Transform:
\[
\mathcal{F}_s^{-1}\{F(\alpha)\} = \frac{2}{\pi} \int_{0}^{\infty} F(\alpha)\sin \alpha x \, d\alpha = f(x)
\]

Important Definitions: The Fourier Cosine Transform and The Inverse Fourier Cosine Transform

Fourier Cosine Transform:
\[
\mathcal{F}_c\{f(x)\} = \int_{0}^{\infty} f(x)\cos \alpha x \, dx = F(\alpha)
\]

Inverse Fourier Cosine Transform:
\[
\mathcal{F}_c^{-1}\{F(\alpha)\} = \frac{2}{\pi} \int_{0}^{\infty} F(\alpha)\cos \alpha x \, d\alpha = f(x)
\]

Important property of the Fourier Transform

If \(\mathcal{F}\{f(x)\} = F(\alpha)\) then for \(n = 1, 2, 3, \ldots\)
\[
\mathcal{F}\{f^{(n)}(x)\} = (-i\alpha)^n F(\alpha)
\]
Important property of the Fourier Sine Transform

If \(F_s\{f(x)\} = F(\alpha) \) then
\[
F_s\{f''(x)\} = -\alpha^2 F(\alpha) + \alpha f(0).
\]

Important property of the Fourier Cosine Transform

If \(F_c\{f(x)\} = F(\alpha) \) then
\[
F_c\{f''(x)\} = -\alpha^2 F(\alpha) - f'(0).
\]

Problem 21.1: Solve the heat equation \(3u_{xx} = u_t, \quad -\infty < x < \infty, \quad t > 0 \) subject to

\[
u(x,0) = \begin{cases} 4, & \text{if } |x| < 2; \\ 0, & \text{if } |x| > 2. \end{cases}
\]

Solution of 21.1: We are looking for a function of the two variables \(x \) (space) and \(t \) (time), called \(u(x,t) \), satisfying some conditions (a pde and initial condition). Instead we will first look for its Fourier transform, in the variable \(x \) (leaving \(t \) alone) \(F\{u(x,t)\} = U(\alpha,t) \).

Applying \(F \) to the pde yields \(F\{3u_{xx}\} = F\{u_t\} \). Using the property of \(F \) that \(F\{f^{(n)}(x)\} = (-i\alpha)^n F(\alpha) \), we get

\[
3(i\alpha)^2 U(\alpha,t) = U(\alpha,t) t,
\]
so
\[
-3\alpha^2 U(\alpha,t) = \frac{d}{dt} U(\alpha,t).
\]
We got the ode, in the variable \(t \):
\[
\frac{dU}{dt} + 3\alpha^2 U = 0.
\]
Solving this simple ode, gives
\[
U(\alpha,t) = ce^{-3\alpha^2 t},
\]
where the constant \(c \) is \(U(\alpha,0) \). \(U(\alpha,0) \) is the Fourier transform of the function describing \(u(x,0) \) namely of

\[
f(x) = \begin{cases} 4, & \text{if } |x| < 2; \\ 0, & \text{if } |x| > 2. \end{cases}
\]

The next task is to compute the Fourier transform of this \(f(x) \).
\[
F\{f(x)\} = \int_{-\infty}^{\infty} f(x)e^{i\alpha x} \, dx = \int_{-2}^{2} 4e^{i\alpha x} \, dx = \left. 4 \frac{e^{i\alpha x}}{i\alpha} \right|_{-2}^{2} = 4 \frac{e^{2i\alpha} - e^{-2i\alpha}}{i\alpha} = 8 \frac{e^{2i\alpha} - e^{-2i\alpha}}{2i\alpha} = 8 \frac{\sin 2\alpha}{\alpha}
\]
So \(c \) above is \(8 \frac{\sin 2\alpha}{\alpha} \), and we get
\[
U(\alpha,t) = 8 \frac{\sin 2\alpha}{\alpha} e^{-3\alpha^2 t}
\]
To go back to \(u(x, t) \) we apply \(\mathcal{F}^{-1} \)

\[
\begin{align*}
\mathcal{F}^{-1}\{U(\alpha, t)\} &= \frac{1}{2\pi} \int_{-\infty}^{\infty} U(\alpha, t)e^{-i\alpha x} \, d\alpha = \frac{4}{\pi} \int_{-\infty}^{\infty} \frac{\sin 2\alpha}{\alpha} e^{-3\alpha^2 t}e^{-i\alpha x} \, d\alpha.
\end{align*}
\]

This is a correct answer, but, using \(e^{-i\alpha x} = \cos(\alpha x) - i \sin(\alpha x) \), and seeing that \(\int_{-\infty}^{\infty} \frac{\sin 2\alpha}{\alpha} e^{-3\alpha^2 t} \sin \alpha x \, d\alpha = 0 \), since the sine function is an odd function, we get the simpler solution (without any complex numbers!)

\[
\mathcal{F}^{-1}\{U(\alpha, t)\} = \frac{4}{\pi} \int_{-\infty}^{\infty} \frac{\sin 2\alpha \cos \alpha x}{\alpha} e^{-3\alpha^2 t} \, d\alpha.
\]

Ans. to 21.1: \(u(x, t) = \frac{4}{\pi} \int_{-\infty}^{\infty} \frac{\sin 2\alpha \cos \alpha x}{\alpha} e^{-3\alpha^2 t} \, d\alpha \).

Problem 21.2: Solve the pde

\[
u_{xx} + u_{yy} = 0, \quad 0 < x < \pi, \quad y > 0
\]

subject to the boundary conditions

\[
\begin{align*}
u(0, y) &= 0 , \quad u(\pi, y) = 3e^{-2y} , \quad y > 0 ; \\
u_y(x, 0) &= 0 , \quad 0 < x < \pi .
\end{align*}
\]

Solution: Instead of looking for \(u(x, t) \) we will look for its Fourier cosine transform with respect to the variable \(y \), leaving \(x \) alone, \(\mathcal{F}_c\{u(x, y)\} = U(x, \alpha) \). Applying \(\mathcal{F}_c \) to the pde gives

\[
\mathcal{F}_c\{u_{xx}\} + \mathcal{F}_c\{u_{yy}\} = \mathcal{F}_c\{0\} \quad 0 < x < \pi .
\]

Since \(\mathcal{F}_c\{u_{yy}\} = -\alpha^2 U(x, \alpha) - u_y(x, 0) \), and the last boundary condition says that \(u_y(x, 0) = 0 \), we have \(\mathcal{F}_c\{u_{yy}\} = -\alpha^2 U(x, \alpha) \). Of course \(\mathcal{F}_c\{u_{xx}\} = U_{xx}(x, \alpha) \). So

\[
\frac{d^2U}{dx^2} - \alpha^2 U = 0 \quad 0 < x < \pi .
\]

The general solution of this ode is

\[
U(x, \alpha) = c_1 \cosh \alpha x + c_2 \sinh \alpha x .
\]

We need to translate the boundary conditions \(u(0, y) = 0, u(\pi, y) = 3e^{-2y} \) from the \(u \)-language to the \(U \)-language, by applying \(\mathcal{F}_c \).

\[
U(0, \alpha) = \mathcal{F}_c\{0\} = 0 , \quad U(\pi, \alpha) = 3\mathcal{F}_c\{e^{-2y}\} .
\]

Now, from Maple, or from a table of integrals:

\[
U(\pi, \alpha) = \mathcal{F}_c\{3e^{-2y}\} = \int_0^{\infty} 3e^{-2y} \cos \alpha y \, dy = \frac{6}{4 + \alpha^2} .
\]
We have the system of two equations and two unknowns

\[U(0, \alpha) = c_1 \cosh 0 + c_2 \sinh 0 , \]

\[U(\pi, \alpha) = c_1 \cosh \alpha \pi + c_2 \sinh \alpha \pi . \]

So

\[0 = c_1 , \]

\[\frac{6}{4 + \alpha^2} = c_1 \cosh \alpha \pi + c_2 \sinh \alpha \pi . \]

and we get \(c_1 = 0 \) and \(c_2 = \frac{6}{(4 + \alpha^2) \sinh \alpha \pi} \), establishing that

\[U(x, \alpha) = \frac{6 \sinh \alpha x}{(4 + \alpha^2) \sinh \alpha \pi} . \]

Applying \(\mathcal{F}^{-1} \) we get

\[u(x, y) = \frac{12}{\pi} \int_0^{\infty} \frac{\sinh \alpha x}{(4 + \alpha^2) \sinh \alpha \pi} \cos \alpha y \, d\alpha . \]

Ans. to 21.2: \[u(x, y) = \frac{12}{\pi} \int_0^{\infty} \frac{\sinh \alpha x}{(4 + \alpha^2) \sinh \alpha \pi} \cos \alpha y \, d\alpha . \]

Note: You have to be flexible! Here the “active” variable was \(y \), not the usual \(x \), so the formulas for \(\mathcal{F}_c \) and \(\mathcal{F}^{-1}_c \) had to be adjusted accordingly.

Note: If the boundary condition would have given \(u(x, 0) \) rather than \(u_y(x, 0) \) then one should use the Sine Fourier Transform.