Important Problem (Laplace’s Equation in a Rectangle)

Solve

\[u_{xx} + u_{yy} = 0, \quad 0 < x < a, \quad 0 < y < b, \]

subject to various types of boundary conditions, involving the function itself or its derivatives on the four sides.

Problem 17.1 Solve

\[u_{xx} + u_{yy} = 0, \quad 0 < x < \pi, \quad 0 < y < 1, \]

subject to

\[u_x(0,y) = 0, \quad u_x(\pi,y) = 0, \quad 0 < y < 1; \]
\[u(x,0) = 0, \quad u(x,1) = f(x), \quad 0 < x < \pi. \]

Solution: We first look for separable solutions of the type

\[u(x,y) = X(x)Y(y). \]

Since

\[u_{xx} = X''(x)Y(y), \quad u_{yy} = X(x)Y''(y), \]

we have

\[X''(x)Y(y) + X(x)Y''(y) = 0. \]

Dividing by \(X(x)Y(y) \), we have

\[\frac{X''(x)}{X(x)} + \frac{Y''(y)}{Y(y)} = 0, \]

so

\[\frac{X''(x)}{X(x)} = -\lambda, \quad \frac{Y''(y)}{Y(y)} = -\lambda. \]

The left side does not depend on \(y \), and the right side does not depend on \(x \), since they are the same, neither of them depends on \(x \) or \(y \), so they are both equal to the same constant, let’s call it \(-\lambda \). We have

\[\frac{X''(x)}{X(x)} = -\lambda, \]
\[\frac{Y''(y)}{Y(y)} = -\lambda. \]

Leading to two odes:

\[X''(x) + \lambda X(x) = 0, \]
\[Y''(y) - \lambda Y(y) = 0. \]
Now it is time to look at the homogeneous boundary conditions (those whose right hand side is 0).
Since \(u(x, y) = X(x)Y(y), \ u_x(x, y) = X'(x)Y(y) \), and
\[
u_x(0, y) = 0 , \quad 0 < y < 1 ,
\]
means
\[
X'(0)Y(y) = 0 .
\]
Since the function \(Y(y) \) better not be zero (or else we get the trivial, zero, solution), we must have:
\[
X'(0) = 0 .
\]
Another boundary condition is:
\[
u_x(\pi, y) = 0 , \quad 0 < y < 1 ,
\]
means
\[
X'(\pi)Y(y) = 0 ,
\]
so
\[
X'(\pi) = 0 .
\]
For future reference, \(u(x, 0) = 0 \) means
\[
X(x)Y(0) = 0 ,
\]
so \(Y(0) = 0 \).

We first have to solve the \textbf{Sturm-Liouville} system
\[
X''(x) + \lambda X(x) = 0 , \quad 0 < x < \pi , \quad X'(0) = 0 , \quad X'(\pi) = 0 .
\]

\textbf{Case I}: \(\lambda < 0 \). Writing \(\lambda = -\alpha^2 \), we get
\[
X''(x) - \alpha^2 X(x) = 0 , \quad 0 < x < \pi , \quad X'(0) = 0 , \quad X'(\pi) = 0 .
\]
So
\[
X(x) = c_1 e^{\alpha x} + c_2 e^{-\alpha x} ,
\]
entailing that
\[
X'(x) = c_1 \alpha e^{\alpha x} - c_2 \alpha e^{-\alpha x} ,
\]
that in turn, lead to:
\[
X'(0) = c_1 \alpha - c_2 \alpha , \quad X'(\pi) = c_1 \alpha e^{\alpha \pi} - c_2 \alpha e^{-\alpha \pi} .
\]
We have to find real numbers \(c_1, c_2 \) such that
\[
c_1 \alpha - c_2 \alpha = 0 , \quad c_1 \alpha e^{\alpha \pi} - c_2 \alpha e^{-\alpha \pi} = 0 .
\]
From the first equation $c_1 = c_2$ (since $\alpha \neq 0$), so $c_1\alpha e^{\alpha \pi} - c_1\alpha e^{-\alpha \pi} = 0$ so $c_1(\alpha e^{\alpha \pi} - \alpha e^{-\alpha \pi}) = 0$ and we get $c_1 = 0$, and hence also $c_2 = 0$, so we only got the trivial solution, that does not count.

Case II: $\lambda = 0$.

$$X''(x) = 0, \quad 0 < x < \pi, \quad X'(0) = 0, \quad X'(\pi) = 0.$$

So $X(x) = c_1 + c_2 x$, $X'(x) = c_2$, $X'(0) = c_2$, $X'(\pi) = c_2$, so $c_2 = 0$, and we got that $X(x) = c_1$ is a solution. The counterpart ode for $Y(y)$ is $Y''(y) = 0$ whose general solution is $Y(y) = c_3 + c_4 y$, so $u(x, y) = X(x)Y(y) = c_1(c_3 + c_4 y)$. Using $u(x, 0) = 0$ gives $c_3 = 0$ so $u(x, y) = c_1 c_3 y$. Renaming $c_1 c_3$, A_0, we get only one solution from Case II $u(x, y) = A_0 y$.

Case III: $\lambda > 0$. Writing $\lambda = \alpha^2$, we get

$$X''(x) + \alpha^2 X(x) = 0, \quad 0 < x < \pi, \quad X'(0) = 0, \quad X'(\pi) = 0.$$

So $X(x) = c_1 \cos(\alpha x) + c_2 \sin(\alpha x)$, $X'(x) = -\alpha c_1 \sin(\alpha x) + \alpha c_2 \cos(\alpha x)$, $X'(0) = \alpha c_2$, $X'(\pi) = -\alpha c_1 \sin(\alpha \pi) + \alpha c_2 \cos(\alpha \pi)$. So $c_2 = 0$ (since $\alpha \neq 0$), and $\sin(\alpha \pi) = 0$.

We have to solve the equation in α,

$$\sin(\alpha \pi) = 0.$$

There are infinitely many solutions $\alpha = 1, 2, \ldots$, in general $\alpha = n$ for any positive integer, (the case $\alpha = 0$ we already have from above and besides in case II we assume $\alpha > 0$). The corresponding solution is

$$X(x) = c_1 \cos(nx), \quad n = 1, 2, \ldots.$$

We now need to find the counterpart $Y(y)$ for each of $\lambda = n^2$ (for $n = 1, 2, 3, \ldots$).

$$Y''(y) - n^2 Y(y) = 0.$$

The general solution is

$$Y(y) = c_3 \sinh ny + c_4 \cosh ny.$$

Remember $u(x, y) = X(x)Y(y)$, so

$$u(x, y) = c_1 \cos(nx)(c_3 \sinh(ny) + c_4 \cosh(ny))$$.

Using the third boundary conditions $u(x, 0) = 0$, we get

$$0 = u(x, 0) = c_1 \cos(nx)(c_3 \sinh 0 + c_4 \cosh 0) = c_1 c_4 \cos(nx),$$

so $c_4 = 0$ and

$$u(x, y) = c_1 c_3 \cos(nx) \sinh(ny).$$
We rename \(c_1 c_3 \) to \(A_n \) and have the solution
\[
 u(x, y) = A_n \cos(nx) \sinh(ny)
\]
for an arbitrary constant \(A_n \).

Now it is time to take care of the last boundary condition, \(u(x, 1) = f(x) \). If we are lucky, and \(f(x) \) happens to be exactly of the form
\[
 f(x) = C \cos(nx)
\]
for some specific integer \(n \), and some specific constant \(C \), then
\[
 u(x, 1) = A_n \cos(nx) \sinh(n) = C \cos(nx)
\]
and we get \(A_n = C / \sinh(n) \), and the final answer would have been
\[
 u(x, y) = \frac{C}{\sinh(n)} \cos(nx) \sinh(ny)
\]
Alas, for a general \(f(x) \) that is not a constant multiple of a pure cosine function, we must go on and use the principle of superposition and Fourier series.

By the principle of superposition, the following function
\[
 u(x, y) = A_0 y + \sum_{n=1}^{\infty} A_n \cos(nx) \sinh(ny)
\]
is a solution to the pde plus the first three boundary conditions, for every choice of constants \(A_0, A_1, A_2 \ldots \), so without the last boundary condition, there are \(\infty \) answers. Now it is time to impose the fourth boundary condition
\[
 u(x, 1) = f(x)
\]
So
\[
 f(x) = u(x, 1) = A_0 + \sum_{n=1}^{\infty} A_n \cos(nx) \sinh(n) = A_0 + \sum_{n=1}^{\infty} (A_n \sinh(n)) \cos(nx)
\]
So we need the Fourier cosine series of Lecture 9.
\[
 f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx
\]
where
\[
 a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) \, dx
\]
\[
 a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx \, dx
\]
So, comparing to the situations that we have now

\[2A_0 = \frac{2}{\pi} \int_0^\pi f(x) \, dx, \]
\[A_n \sinh(n) = \frac{2}{\pi} \int_0^\pi f(x) \cos nx \, dx, \]

Doing the algebra, gives

\[A_0 = \frac{1}{\pi} \int_0^\pi f(x) \, dx \]
\[A_n = \frac{2}{\pi \sinh(n)} \int_0^\pi f(x) \cos nx \, dx. \]

So the final answer is that the solution \(u(x, y) \) of our boundary-value problem is

\[u(x, y) = A_0 y + \sum_{n=1}^{\infty} A_n \cos(nx) \sinh(ny), \]

where

\[A_0 = \frac{1}{\pi} \int_0^\pi f(x) \, dx, \quad A_n = \frac{2}{\pi \sinh(n)} \int_0^\pi f(x) \cos nx \, dx. \]

This is the answer. Another way of writing the answer is the following hairy formula

\textbf{Ans. to Problem 17.1:}

\[u(x, y) = \left(\frac{1}{\pi} \int_0^\pi f(x) \, dx \right) y + \sum_{n=1}^{\infty} \left(\frac{2}{\pi \sinh(n)} \int_0^\pi f(x) \cos nx \, dx \right) \cos(nx) \sinh(ny). \]

\textbf{Important Property: Boundary Superposition Principle}

If you have a complicated so-called \textit{Dirichlet} boundary value problem

\[u_{xx} + u_{yy} = 0, \quad 0 < x < a, \quad 0 < y < b \]
\[u(0, y) = F(y), \quad u(a, y) = G(y), \quad 0 < y < b \]
\[u(x, 0) = f(x), \quad u(x, b) = g(x), \quad 0 < x < a. \]

You break it up into two problems:

\textbf{First Problem:} Find the solution, let’s call it \(u_1(x, y) \) satisfying

\[(u_1)_{xx} + (u_1)_{yy} = 0, \quad 0 < x < a, \quad 0 < y < b \]
\[u_1(0, y) = 0, \quad u_1(a, y) = 0, \quad 0 < y < b \]
\[u_1(x, 0) = f(x), \quad u_1(x, b) = g(x), \quad 0 < x < a. \]
Second Problem: Find the solution, let’s call it \(u_2(x, y) \) satisfying

\[
(u_2)_{xx} + (u_2)_{yy} = 0, \quad 0 < x < a, \quad 0 < y < b
\]

\[
u_2(0, y) = F(y), \quad u_2(a, y) = G(y), \quad 0 < y < b.
\]

\[
u_2(x, 0) = 0, \quad u_2(x, b) = 0, \quad 0 < x < a.
\]

Once you solved these (already complicated!) two problems, the **final** solution, to the original problem, is simply

\[
u(x, y) = u_1(x, y) + u_2(x, y).
\]

In other words, just add them up!