Dr. Z.'s Calc5 Lecture 1 Handout: Definition of the Laplace Transform

By Doron Zeilberger

Theory:

The Definition of the Laplace Transform.

Input: A function \(f(t) \) defined on the non-negative real axis \([0, \infty)\).

Output: Another function, of \(s \), given by :

\[
F(s) = \int_0^\infty f(t)e^{-ts} \, dt .
\]

(Note, \(F(s) \) is also written \(\mathcal{L}\{f(t)\} \)).

What does it mean?

If you were promised a job from now \((t = 0)\) until eternity, with the income function \(f(t) \), paid continuously, being \(f(t) \), the total income would be

\[
\int_0^\infty f(t) \, dt ,
\]

and this is usually infinity. So you should be happy, you will earn infinite dollars! But what about inflation? If the continuous inflation rate is \(s \), so a dollar in \(t \) years would only be worth \(e^{-st} \) of today’s dollars, then your income after \(t \) years, would be

\[
e^{-st}f(t)
\]

in today’s dollars. The total income, from now to eternity would (usually) no longer be infinity but

\[
F(s) = \int_0^\infty f(t)e^{-ts} \, dt ,
\]

a certain finite amount that depends on the inflation rate \(s \).

For example, if you were promised an income function of \(f(t) = t \) and think that it is a great deal, and the inflation rate is 10\%, then your income would be

\[
F(1) = \int_0^\infty te^{-t/10} \, dt .
\]

Doing this integral (using integration by parts), we get

\[
F(1) = \int_0^\infty te^{-t/10} \, dt = (t)(-10e^{-t/10}) \bigg|_0^\infty - \int_0^\infty (-10e^{-t/10}) \, dt = 0 - 0 + 100 = 100 .
\]
(since \(\lim_{t \to \infty} te^{-t/10} = 0 \) and of course \(\lim_{t \to \infty} e^{-t/10} = 0 \))

So your effective total income would be only 100 dollars, in today’s dollars.

If the inflation rate is not so bad, %1 instead of %10 then if you do a similar calculation you would get 10000 dollars.

If you want to know a formula for any inflation rate, \(s \), then you do the above calculation for a symbolic \(s \) (only remembering that \(s \) must be positive, or else the inflation would be deflation and you would indeed be guaranteed an infinite income until you die at infinity). We have, instead of 0.1, \(s \) (but pretending that \(s \) is a number):

\[
F(s) = \int_0^\infty te^{-st} dt .
\]

Doing this integral (by integration by parts), we get

\[
F(s) = \int_0^\infty te^{-st} dt = \left[\frac{t}{s} e^{-st} \right]_0^\infty - \int_0^\infty \left(-\frac{1}{s} e^{-st} \right) dt = \left(-\frac{1}{s^2} e^{-st} \right) _0^\infty = 0 - 0 - \frac{1}{s^2} = \frac{1}{s^2} .
\]

(since \(\lim_{t \to \infty} te^{-st} = 0 \) and of course \(\lim_{t \to \infty} e^{-st} = 0 \))

So your effective income would be only \(\frac{1}{s^2} \) dollars (in today’s dollars).

Note that the smaller your inflation rate, the larger would be your total income. For example, if \(s = 10^{-10} \) you would get \(10^{20} \) dollars during your infinite life, a lot of money, but still not infinite!

Problem 1.1: Using the definition, find the Laplace transform \(\mathcal{L}\{f(t)\} \) (alias \(F(s) \)) of

\[
f(t) = 1 .
\]

Solution: By the definition

\[
\mathcal{L}\{f(t)\} = \int_0^\infty 1 \cdot e^{-st} dt = \int_0^\infty e^{-st} dt .
\]

Remember from Calc1 that, for any constant \(c \)

\[
\int e^{ct} dt = \frac{e^{ct}}{c} + C ,
\]

so

\[
\mathcal{L}\{f(t)\} = \int_0^\infty e^{-st} dt = \left. \frac{e^{-st}}{-s} \right|_0^\infty = \frac{e^{-s \cdot \infty}}{-s} - \frac{e^{-s \cdot 0}}{-s} = \frac{e^{-\infty}}{-s} - \frac{e^{0}}{-s} = \frac{1}{s} .
\]

Ans. to 1.1: The Laplace Transform of the constant function \(f(t) = 1 \) is the function (of \(s \)) \(F(s) = \frac{1}{s} \).
Problem 1.2: Using the definition, find the Laplace transform \(\mathcal{L}\{f(t)\} \) (alias \(F(s) \)) of
\[f(t) = e^t. \]

Solution: By the definition
\[
\mathcal{L}\{f(t)\} = \int_0^\infty e^t \cdot e^{-st} \, dt = \int_0^\infty e^{(1-s)t} \, dt.
\]
Remember from Calc1 that, for any constant \(c \)
\[
\int e^{ct} \, dt = \frac{e^{ct}}{c},
\]
so (assuming, as we may, that \(s > 1 \))
\[
\mathcal{L}\{f(t)\} = \int_0^\infty e^{(1-s)t} \, dt = \frac{e^{(1-s)t}}{(1-s)} \bigg|_0^\infty = \frac{e^{(1-s)\infty} - e^{(1-s)0}}{1-s} = \frac{e^{-\infty} - e^{0}}{1-s} = \frac{1}{1-s} = \frac{1}{s-1}.
\]
Ans. to 1.2: The Laplace Transform of the function \(f(t) = e^t \) is the function (of \(s \)) \(F(s) = \frac{1}{s-1} \).

Comment: The above is valid only when \(s > 1 \).

Problem 1.3: Using the definition find the Laplace transform \(\mathcal{L}\{f(t)\} \) (alias \(F(s) \)) of
\[
 f(t) = \begin{cases}
 1, & \text{if } 0 \leq t \leq 1; \\
 -1, & \text{if } t \geq 1.
\end{cases}
\]

Solution: By the definition
\[
\mathcal{L}\{f(t)\} = \int_0^\infty f(t) \cdot e^{-st} \, dt.
\]
Since \(f(t) \) is given by one formula in the interval \((0,1)\) and by another one in \((1,\infty)\), we have to break-up the integral and treat each piece separately.
\[
F(s) = \int_0^1 f(t)e^{-st} \, dt + \int_1^\infty f(t)e^{-st} \, dt
\]
\[
= \left[\int_0^1 f(t)e^{-st} \, dt \right] + \left[\int_1^\infty f(t)e^{-st} \, dt \right]
\]
\[
= \left[\int_0^1 e^{-st} \, dt \right] + \left[\int_1^\infty (-1) \cdot e^{-st} \, dt \right]
\]
\[
= \left[\frac{e^{-st}}{-s} \right]_0^1 + \left[\frac{e^{-st}}{-s} \right]_1^\infty
\]
\[
= \left(\frac{e^{-s} - e^{-0}}{-s} \right) - \left(\frac{e^{-s\infty} - e^{-s1}}{-s} \right)
\]
\[
= \left(\frac{e^{-s} - 1}{-s} \right) - \left(\frac{1 - e^{-s1}}{-s} \right)
\]
\[
= \frac{1}{s} - \frac{2e^{-s}}{s}.
\]
Ans. to 1.3: \(F(s) = \frac{1}{s} - \frac{2e^{-s}}{s} \).
Using Tables of Laplace Transform

In real life, people (usually) don’t compute the Laplace Transform from scratch, they use tables. The most important items are:

\[
\begin{align*}
(a) \quad \mathcal{L}\{1\} &= \frac{1}{s} \\
(b) \quad \mathcal{L}\{t^k\} &= \frac{k!}{s^{k+1}} \quad (k = 1, 2, 3, \ldots), \\
(c) \quad \mathcal{L}\{e^{at}\} &= \frac{1}{s-a}, \\
(d) \quad \mathcal{L}\{\sin kt\} &= \frac{k}{s^2 + k^2}, \\
(e) \quad \mathcal{L}\{\cos kt\} &= \frac{s}{s^2 + k^2}, \\
(f) \quad \mathcal{L}\{\sinh kt\} &= \frac{k}{s^2 - k^2}, \\
(g) \quad \mathcal{L}\{\cosh kt\} &= \frac{s}{s^2 - k^2}.
\end{align*}
\]

Problem 1.4: Using Tables, find \(\mathcal{L}\{f(t)\}\), if \(f(t) = 2(t+1)(t+4)\).

Solution: First use algebra to **expand**:

\[f(t) = 2(t+1)(t+4) = 2t^2 + 5t + 4 = 2t^2 + 10t + 8\quad .\]

Now use **linearity** and the tables

\[
\mathcal{L}\{f(t)\} = \mathcal{L}\{2t^2 + 10t + 8\} = \mathcal{L}\{2t^2\} + 10\mathcal{L}\{t\} + 8\mathcal{L}\{1\} = 2\frac{2!}{s^3} + 10\frac{1!}{s^2} + 8\frac{1}{s} = \frac{4}{s^3} + \frac{10}{s^2} + \frac{8}{s} .
\]

Ans. to 1.4: \(\mathcal{L}\{f(t)\} = \frac{4}{s^3} + \frac{10}{s^2} + \frac{8}{s} .
\]

Note: This is the best way to leave the answer, **Please** do not take common-denominator and simplify it further.

Problem 1.5: Using Tables, find \(\mathcal{L}\{f(t)\}\), if \(f(t) = 5 \sin 3t + (e^t + 1)^2\).

Solution: First use algebra to **expand**:

\[f(t) = 5 \sin 3t + e^{2t} + e^t + 1\quad .\]

By “linearity”

\[
\mathcal{L}\{f(t)\} = \mathcal{L}\{5 \sin 3t + e^{2t} + e^t + 1\} = 5\mathcal{L}\{\sin 3t\} + \mathcal{L}\{e^{2t}\} + \mathcal{L}\{e^t\} + \mathcal{L}\{1\} = 5\mathcal{L}\{\sin 3t\} + \mathcal{L}\{e^{2t}\} + 2\mathcal{L}\{e^t\} + \mathcal{L}\{1\} .
\]

Now use the tables:

\[
\mathcal{L}\{f(t)\} = 5 \cdot \frac{3}{s^2 + 9} + \frac{1}{s-2} + 2 \cdot \frac{1}{s-1} + \frac{1}{s} = \frac{15}{s^2 + 9} + \frac{1}{s-2} + \frac{2}{s-1} + \frac{1}{s} .
\]

Ans. to 1.5: \(\mathcal{L}\{f(t)\} = \frac{15}{s^2 + 9} + \frac{1}{s-2} + \frac{2}{s-1} + \frac{1}{s} .
\]