Solutions to the Attendance Quiz # 17 for Dr. Z.'s Calc4 for Lecture 17

1. Convert the following diff. eq. to a system of first-order diff.eqs

$$y^{(4)}(t) = \sqrt{(2y'''(t) + t^2 + y'(t)y(t))} + \cos y(t) + e^{y''(t)}$$

Sol. to 1: We define

$$x_1(t) = y(t)$$
 , $x_2(t) = y'(t)$, $x_3(t) = y''(t)$, $x_4(t) = y'''(t)$,

The first three equations are easy! (and always the same!)

$$x'_{1}(t) = x_{2}(t)$$

 $x'_{2}(t) = x_{3}(t)$
 $x'_{3}(t) = x_{4}(t)$

The last equation is

$$x'_{4}(t) = \sqrt{(2x_{4}(t) + t^{2} + x_{2}(t)x_{1}(t))} + \cos x_{1}(t) + e^{x_{3}(t)}$$

(Obtained by replacing y(t) by $x_1(t)$, y'(t) by $x_2(t)$, y''(t) by $x_3(t)$, y'''(t) by $x_4(t)$.)

Comment: Many people put $x_5(t)$ on the left hand side. This is **wrong**, there are only **four** functions in the system, since the given diff.eq. was **fourth order**. The left side is $x'_4(t)$.

2. Solve the initial value problem for the system, by using techniques for solving a single diff.eq. of higher order

$$x'_1(t) = 2x_2(t)$$
 , $x'_2(t) = -8x_1(t)$; $x_1(0) = 2$, $x_2(0) = 32$.

Sol. of 2: From the first equation we have

$$x_2(t) = \frac{1}{2}x_1'(t)$$
 .

Plugging into the second

$$(\frac{1}{2}x_1'(t))' = -8x_1(t)$$
 .

 So

$$x_1''(t) = -16x_1(t) \quad ,$$

and moving everything to the left:

$$x_1''(t) + 16x_1(t) = 0 \quad .$$

Let's solve this diff. eq. The characteristic equation is

$$r^2 + 16 = 0$$
 .

 So

$$r^2 = -16$$

and $r = 0 \pm 4i$. So the general solution is

$$x_1(t) = c_1 \cos 4t + c_2 \sin 4t$$

We need initial conditions. Of course, $x_1(0) = 2$, but what is $x'_1(0)$?. Going back to:

$$x_2(t) = \frac{1}{2}x_1'(t)$$

and plugging-in t = 0:

$$x_2(0) = \frac{1}{2}x_1'(0)$$

So $x'_1(0) = 2x_2(0) = 2 \cdot 32 = 64.$

Plugging-in t = 0 into the general solution gives:

$$x_1(0) = c_1 \cos 0 + c_2 0 = c_1 \quad .$$

So $c_1 = 2$. Differentiating the general solution we have

$$x_1'(t) = -4c_1 \sin 4t + 4c_2 \cos 4t \quad .$$

So, when t = 0:

 $x_1'(0) = 4c_2 \quad ,$

since $x'_1(0) = 64$ we get

 $64 = 4c_2$,

so $c_2 = 16$.

Going back to the general solution, we have

$$x_1(t) = 2\cos 4t + 16\sin 4t$$

Finally, going back to

$$x_2(t) = \frac{1}{2}x_1'(t)$$

We have

$$x_2(t) = \frac{1}{2}(2\cos 4t + 16\sin 4t)' = \frac{1}{2}(-8\sin 4t + 64\cos 4t) = -4\sin 4t + 32\cos 4t$$

Ans. to 2:

$$x_1(t) = 2\cos 4t + 16\sin 4t$$
, $x_2(t) = -4\sin 4t + 32\cos 4t$

Comments: Most people ran out of time (it was a very LONG problem), Congratulations to the few people who got it completely!