
Dr. Z.’s Calc4 Lecture 24 Handout: Series Solutions of Diff.Eqs.

By Doron Zeilberger

The best kind of functions are polynomials that have the format

f(x) = a0 + a1x + . . . + anxn ,

for some finite n, called the degree of the polynomial. If we are really lucky, we may find a solution
of a diff.eq. that is a polynomial. For example the diff.eq.

y′′(x) + xy′(x) − 2y(x) = 0 .

If someone told you that there is a solution that is a polynomial of degree 2, you can find it, by
trying the template

y(x) = a0 + a1x + a2x
2 ,

featuring undetermined coefficients a0, a1, a2. To find them, you first find expressions, in terms of
a0, a1, a2 for y′(x) and y′′(x):

y′(x) = a1 + 2a2x

y′′(x) = 2a2 .

You now plug this template into the diff.eq. getting

2a2 + x(a1 + 2a2x) − 2(a0 + a1x + a2x
2) = 2a2 + a1x + 2a2x

2 − 2a0 − 2a1x − 2a2x
2 .

Now you collect coefficients getting

(2a2 − 2a0) − a1x .

Since this is identically zero, each coefficient must be zero, so we have to solve the system

2a2 − 2a0 = 0 , a1 = 0 ,

whose solution is a0 = anything, a1 = 0, a2 = a0, so a solution is a0 + 0 · x + a0x
2 = a0(1 + x2).

So we lucked out and found a polynomial solution, f(x) = 1 + x2 and of course (since the diff.eq.
is linear and homogeneous) any constant multiple of it.

This was luck! Consider a general linear homogeneous second-order differential equation

P (x)y′′(x) + Q(x)y′(x) + R(x)y(x) = 0 .

For the sake of simplicity, let’s look for solutions near x = 0 (we can always make a change of
variable to move it to any desired point). If P (x), Q(x), R(x) are nice (often these are polynomials)
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and P (x) does not vanish at x = 0 (or, in general, at x = x0) we can divide by P (x) getting a
simplified diff.eq. of the form

y′′(x) + p(x)y′(x) + q(x)y(x) = 0 ,

where p(x) and q(x) do not blow up at x = 0.

If p(x) and q(x) have Taylor series, then we can use the same idea as above to get series solution,
but since we no longer expect a polynomial, the template for a series solution is a polynomial
with infinite degree, whose template is

y(x) = a0 + a1x + a2x
2 + . . . + anxn + . . . ,

or in fancy sigma notation

y(x) =
∞∑

n=0

anxn ,

but now we must find infinitely many numbers, namely a0, a1, a2, . . .. Of course this is impossible,
but we can get the first few, and if in luck we can detect a pattern and find an expression for an

in terms of n. At any rate, we always get a recurrence relation that expresses an in terms of
an−1, an−2, so with a computer we can find thousands terms.

Problem 24.1 For the diff.eq.

(1 − x)y′′(x) + xy′(x) − y(x) = 0 .

(a) Seek power series solution of the given differential equation at x0 = 0, find the recurrence
relation.

(b) Find the first four terms in each of two solutions y1(x), y2(x) (unless the series terminates
sooner)

Solution of 24.1:

Step 1: Write down the template

y(x) =
∞∑

n=0

anxn

and write down the series for y′(x) and y′′(x)

y′(x) =
∞∑

n=0

nanxn−1

y′′(x) =
∞∑

n=0

n(n − 1)anxn−2
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Step 2: Plug into the diff.eq.

(1 − x)y′′(x) + xy′(x) − y(x) =

(1 − x)

( ∞∑
n=0

n(n − 1)anxn−2

)

+x

∞∑
n=0

nanxn−1

−
∞∑

n=0

anxn .

Step 3: Open up all parentheses (and if the first and/or second terms are zero start the
∑

later)

∞∑
n=2

n(n − 1)anxn−2

−
∞∑

n=2

n(n − 1)anxn−1

+
∞∑

n=1

nanxn

−
∞∑

n=0

anxn .

Step 4. Rewrite each
∑

so that we have xn by shifting the summation (in the first
∑

above we
replace n by n + 2 to make the power xn rather than xn−2, in the second

∑
we replace n by n + 1.

Step 5: Open up all parentheses (and if the first and/or second terms are zero start the
∑

later)

∞∑
n=0

(n + 2)(n + 1)an+2x
n

−
∞∑

n=1

(n + 1)nan+1x
n

+
∞∑

n=1

nanxn

−
∞∑

n=0

anxn .

Step 6 Collect into one
∑

(and possibly a left-over at the beginning)
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(2a2 − a0) +
∞∑

n=1

( (n + 2)(n + 1)an+2 − (n + 1)nan+1 + (n − 1)an ) xn

Set the initial term(s) to zero and the coefficient of xn, thereby getting the recurrence relation

a2 =
1
2
a0

(n + 2)(n + 1)an+2 − (n + 1)nan+1 + (n − 1)an = 0.

This ends the first part.

Step 7:

To get the first 4 terms, we plug-in in turn n = 0, n = 1, n = 2. We already know that a2 = 1
2a0.

When n = 1 we get

(1 + 2)(1 + 1)a1+2 − (1 + 1)(1)a1+1 + (1 − 1)a1 = 0.

So
6a3 − 2a2 = 0 ,

so a3 = 1
3a2 = 1

6a0.

When n = 2 we get

(2 + 2)(2 + 1)a2+2 − (2 + 1)(2)a2+1 + (2 − 1)a2 = 0.

So
12a4 − 6a3 + a2 = 0.

So a4 = 1
12 (6a3 − a2) = 1

12 (6 1
6 − 1

2 )a0 = 1
24a0.

Answer to 24.1 The recurrence relation for the coefficients an is

(n + 2)(n + 1)an+2 − (n + 1)nan+1 + (n − 1)an = 0.

The first four coefficients are

a1 = a1, a2 = 1
2a0, a3 = 1

6a0, a4 = 1
24a0.

Remark a1 never shows up later. So y1(x) = x is a one (fundamental) solution! (very simple, by
sheer luck) The other solution starts (taking a0 = 1) y2(x) = 1 + 1

2x2 + 1
6x3 + 1

24x4 + . . ..
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