Dr. Z.’s Calc4 Lecture 17 Handout: Introducing Systems of First Order Linear Equations; Review of Matrices

By Doron Zeilberger

So far we considered one diff.eq. with one unknown function to be found, usually written $y(t)$ or $y(x)$, where t or x were the independent variable and y was the dependent variable.

Often, in applications, we have several (say n) differential equations with several (usually the same number, n) of unknown functions, called $x_1(t), x_2(t), \ldots, x_n(t)$. We only consider first order equations, i.e. when we do systems, we only have the first derivative show up.

The general format of a System of First-Order Differential Equations with n functions to look for, $x_1(t), \ldots, x_n(t)$ is

\[
x_1'(t) = F_1(t, x_1(t), x_2(t), \ldots, x_n(t)) ,
\]
\[
x_2'(t) = F_2(t, x_1(t), x_2(t), \ldots, x_n(t)) ,
\]
\[\ldots
\]
\[
x_n'(t) = F_n(t, x_1(t), x_2(t), \ldots, x_n(t)) .
\]

Here $F_1(t, x_1, \ldots, x_n), \ldots, F_n(t, x_1, \ldots, x_n)$ are some (possibly very complicated) multivariable functions of $n + 1$ arguments.

If we specify initial conditions

\[
x_1(t_0) = x_1^0 , \quad x_2(t_0) = x_2^0 , \quad \ldots , \quad x_n(t_0) = x_n^0 ,
\]

then we have an initial value problem.

Of course, it is usually not possible to get an exact solution, in terms of a formula, and the best that we can hope for is to find good approximations, on the computer, but, in an abstract sense, we know that solutions exist, if the functions F_1, F_2, \ldots, F_n featured in the system, are not too crazy.

We have

If the functions F_1, \ldots, F_n and all their partial derivatives are continuous (do not blow up and have no breaks) in a box-like region R of the $(n + 1)$ dimensional $tx_1 \ldots x_n$ space containing the point $(t_0, x_1^0, \ldots, x_n^0)$. Then there is an interval $|t - t_0| < h$ in which there is unique solution of the above initial value problem.
An important special case of systems of Diff.Eqs. are **Linear Systems of Diff.Eq.s**. whose format is

\[x'_1(t) = p_{11}(t)x_1(t) + \ldots + p_{1n}(t)x_n + g_1(t) \]
\[x'_2(t) = p_{21}(t)x_1(t) + \ldots + p_{2n}(t)x_n + g_2(t) \]
\[\ldots \]
\[\ldots \]
\[x'_n(t) = p_{n1}(t)x_1(t) + \ldots + p_{nn}(t)x_n + g_n(t) \]

If all the \(g_i(t) \) are 0 then we have a **homogeneous system**.

If all the coefficient functions \(p_{ij}(t) \) are continuous in an interval \(I \), then we are guaranteed a solution satisfying any initial conditions.

Converting ONE Higher-Order Diff.Eq. to a FIRST-ORDER System

Whenever we have one diff.eq. of the format

\[y^{(n)}(t) = F(t, y(t), y'(t), \ldots, y^{(n-1)}(t)) \]

there is a quick way to make it into a first order system, as follows. Assuming that we already know \(y(t) \), we define

\[x_1(t) = y(t) \]
\[x_2(t) = y'(t) \]
\[x_3(t) = y''(t) \]
\[\ldots \]
\[x_n(t) = y^{(n-1)}(t) \]

then

\[x'_1(t) = x_2(t) \]
\[x'_2(t) = x_3(t) \]
\[x'_3(t) = x_4(t) \]
\[\ldots \]
\[x'_{n-1}(t) = x_n(t) \]
\[x'_n(t) = F(t, x_1, \ldots, x_n) \]

Note that only the last equation is “complicated”, the first \(n - 1 \) ones are very simple.

Problem 17.1: Convert the following third-order diff.eq. to a system of first-order diff.eqs

\[y'''(t) = \cos(y''(t) + t^3 + y'(t)y(t)) + \sin(y(t)) \]

Solutions to 17.1: The first \(n - 1 \) equations are **always** the same. Here \(n = 3 \) (since it is a third-order diff.eq.) so our first two equations are

\[x'_1(t) = x_2(t) \]
\[x'_2(t) = x_3(t) \]

and to get the last one, you replace \(y'''(t) \) by \(x'_3(t) \) and \(y''(t) \) by \(x_3(t) \), \(y'(t) \) by \(x_2(t) \), and \(y(t) \) by \(x_1(t) \). In this problem

\[x'_3(t) = \cos(x_3(t) + t^3 + x_2(t)x_1(t)) + \sin(x_1(t)) \]

Ans. to 17.1:

\[x'_1(t) = x_2(t) \quad x'_2(t) = x_3(t) \quad x'_3(t) = \cos(x_3(t) + t^3 + x_2(t)x_1(t)) + \sin(x_1(t)) \]

But sometimes one can go the other way. Given a first-order system, we can solve it using what we know about higher-order diff.eq. Lucky for us, we only need to do it for linear systems with constant coefficients.

Problem 17.2 Solve the initial value problem for the system

\[x'_1(t) = -2x_1(t) + x_2(t) \quad x'_2(t) = x_1(t) - 2x_2(t) \quad x_1(0) = 2 \quad x_2(0) = 3 \]

Solution to 17.2

Step 1: Use the first equation, and algebra, to express \(x_2(t) \) in terms of \(x_1(t) \) (and its derivative \(x'_1(t) \)).

\[x_2(t) = x'_1(t) + 2x_1(t) \]

Step 2: Substitute this into second equation:

\[(x'_1(t) + 2x_1(t))' = x_1(t) - 2(x'_1(t) + 2x_1(t)) \]

Step 3: Use calculus and algebra to simplify

\[x''_1(t) + 2x'_1(t) = x_1(t) - 2x'_1(t) - 4x_1(t) \]

\[x''_1(t) + 4x'_1(t) + 3x_1(t) = 0 \]

Step 4: Go back to Step 1 and plug \(t = 0 \) and use algebra to find \(x'_1(0) \):

\[x_2(0) = x'_1(0) + 2x_1(0) \]

\[x'_1(0) = x_2(0) - 2x_1(0) = 3 - 2 \cdot 2 = 3 - 4 = -1 \]

Step 5: Solve the initial value problem

\[x''_1(t) + 4x'_1(t) + 3x_1(t) = 0 \quad x_1(0) = 2 \quad x'_1(0) = -1 \]
We get \(x_1(t) = \frac{5}{2}e^{-t} - \frac{1}{2}e^{-3t} \)

Step 6: Go back to Step 1 and find out what is \(x_2(t) \):

\[
x_2(t) = x_1'(t) + 2x_1(t) = \left(\frac{5}{2}e^{-t} - \frac{1}{2}e^{-3t} \right)' + 2\left(\frac{5}{2}e^{-t} - \frac{1}{2}e^{-3t} \right) = -\frac{5}{2}e^{-t} + \frac{3}{2}e^{-3t} + 5e^{-t} - e^{-3t} = \frac{5}{2}e^{-t} + \frac{1}{2}e^{-3t}
\]

Ans. to 17.2: \(x_1(t) = \frac{5}{2}e^{-t} - \frac{1}{2}e^{-3t} \), \(x_2(t) = \frac{5}{2}e^{-t} + \frac{1}{2}e^{-3t} \).

Review of Vectors and Matrices

Look it up in wikipedia. In Maple you use the package LinearAlgebra. Look up the commands Matrix, Inverse, Multiply.