
Dr. Z.’s Calc4 Lecture 13 Handout: Variation of Parameters

By Doron Zeilberger

Important Theorem (Complicated Version)

If the functions p(t), q(t), g(t) are continuous on an open interval I, and if y1(t) and y2(t) are
independent solutions of the homogeneous diff.eq.

y′′(t) + p(t) y′(t) + q(t) y(t) = 0 ,

then a particular solution of the inhomogeneous diff.eq.

y′′(t) + p(t) y′(t) + q(t) y(t) = g(t) ,

is given by

−y1(t)
∫ t

t0

y2(s)g(s)
W (y1, y2)(s)

ds + y2(t)
∫ t

t0

y1(s)g(s)
W (y1, y2)(s)

ds

where W (y1, y2)(t) = y1(t)y′2(t)− y′1(t)y2(t).

Important Theorem (Simple Version)

If the functions p(t), q(t), g(t) are continuous on an open interval I, and if y1(t) and y2(t) are
independent solutions of the homogeneous diff.eq.

y′′(t) + p(t) y′(t) + q(t) y(t) = 0 ,

then a particular solution of the inhomogeneous diff.eq.

y′′(t) + p(t) y′(t) + q(t) y(t) = g(t) ,

is given by
Y (t) = u1(t)y1(t) + u2(t)y2(t)

where u1(t), u2(t) are two functions whose derivatives satisfy the system of two equations

u′1(t)y1(t) + u′2(t)y2(t) = 0 ,

u′1(t)y′1(t) + u′2(t)y′2(t) = g(t) ,

Problem 13.1: Using Variation of Parameters, find a particular solution of

y′′(t)− y′(t)− 2y(t) = 2e−t .

Solution of 13.1: The characteristic equation of the homog. version is r2 − r − 2 = 0. Factoring
(r − 2)(r + 1) = 0, whose roots are r = 2, r = −1, so

y1(t) = e−t , y2(t) = e2t .
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We also need the derivatives

y′1(t) = −e−t , y′2(t) = 2e2t .

The function g(t) is the right hand side (after we have divided by the coefficient of y′′(t), in this
case it is 1), so g(t) = 2e−t.

We are looking for two functions u′1(t) and u′2(t) such that

u′1(t)e−t + u′2(t)e2t = 0 ,

u′1(t)(−e−t) + u′2(t)(2e2t) = 2e−t ,

Cleaning up (multiplying by et)
u′1(t) + u′2(t)e3t = 0 ,

−u′1(t) + 2u′2(t)e3t = 2 ,

From the first equation, we get
u′1(t) = −e3tu′2(t) .

Pluging into the second
e3tu′2(t) + 2e3tu′2(t) = 2 .

Collecting terms
3e3tu′2(t) = 2 .

Dividing by 3e3t:

u′2(t) =
2
3
e−3t .

Going back to u′1(t):

u′1(t) = −e3t 2
3
e−3t = −2

3
.

So we have
u′1(t) = −2

3
, u′2(t) =

2
3
e−3t .

Integrating (we don’t have to worry about the +C)

u1(t) = −2
3
t , u2(t) = −2

9
e−3t .

Finally, we plug these into
Y (t) = u1(t)y1(t) + u2(t)y2(t)
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So

Y (t) = (−2
3
t)e−t − 2

9
e−3te2t = −2

3
te−t − 2

9
e−t .

First Answer to 13.1: A particular solution is Y (t) = − 2
3 te−t − 2

9e−t.

But since the second term is a multiple of y1(t) and adding or subtracting any constant multipe of
y1(t) and/or y2(t) from a particular solution is still (another, possibly simpler) particular solution,
we can forget about the second term and get

Second Answer to 13.1: An even better particular solution is Y (t) = − 2
3 te−t.

Problem 13.2: Using Variation of Parameters, find a particular solution of

y′′(t)− 2y′(t) + y(t) =
et

1 + t2
.

Solution of 13.2: The characteristic equation of the homog. version is r2− 2r + 1 = 0. Factoring
(r − 1)2 = 0, and there is a double root, r = 1. So

y1(t) = et , y2(t) = tet .

We also need the derivatives

y′1(t) = et , y′2(t) = (t + 1)et .

The function g(t) is the right hand side (after we have divided by the coefficient of y′′(t), in this
case it is 1), so g(t) = et

t2+1 .

We are looking for two functions u′1(t) and u′2(t) such that

u′1(t)et + u′2(t)tet = 0 ,

u′1(t)et + u′2(t)(t + 1)et =
et

1 + t2
,

Cleaning up (dividing by et)
u′1(t) + u′2(t)t = 0 ,

u′1(t) + (t + 1)u′2(t) =
1

1 + t2
.

From the first equation, we get
u′1(t) = −tu′2(t) .
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Pluging into the second

−tu′2(t) + (t + 1)u′2(t) =
1

1 + t2
,

Simplifying:

u′2(t) =
1

1 + t2
.

Going back to u′1(t):

u′1(t) = −tu′2(t) = − t

1 + t2

So we have
u′1(t) = − t

1 + t2
, u′2(t) =

1
1 + t2

.

Integrating (we don’t have to worry about the +C)

u1(t) = −1
2

ln(1 + t2) , u2(t) = arctan t .

Finally, we plug these into
Y (t) = u1(t)y1(t) + u2(t)y2(t)

So
Y (t) = −1

2
et ln(1 + t2) + tet arctan t

Answer to 13.2: A particular solution is Y (t) = − 1
2et ln(1 + t2) + tet arctan t.

Problem 13.3: Verify that the given functions y1(x), y2(x) are solutions of the corresponding
homogeneous linear diff.eq., and find the general solution of the diff.eq.

x2y′′(x)− 3xy′(x) + 4y(x) = x2 ln x , x > 0 ; y1(x) = x2 , y2(x) = x2 ln x .

Solution of 13.3: y1(x) = x2 , y′1(x) = 2x , y′′1 (x) = 2, so

x2y′′1 (x)− 3xy′1(x) + 4y1(x) = x2(2)− 3x(2x) + 4x2 = 2x2 − 6x2 + 4x2 = 0 .

Also

y2(x) = x2 ln x , y′2(x) = 2x ln x + x , y′′2 (x) = 2 ln x + 2 + 1 = 2 ln x + 3, so

x2y′′2 (x)− 3xy′2(x) + 4y2(x) = x2(2 ln x + 3)− 3x(2x ln x + x) + 4x2 ln x = 0 .

So both y1(x) = x2 and y2(x) = x2 ln x are indeed solutions of the homogeneous version.

The function g(x) is the right hand side after we have divided by the coefficient of y′′(t), so
g(x) = ln x ,
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We are looking for two functions u′1(x) and u′2(x) such that

u′1(x) x2 + u′2(x) x2 ln x = 0 ,

u′1(x) (2x) + u′2(x) (2x ln x + x) = lnx ,

From the first equation
u′1(x) = −(ln x) u′2(x) .

Pluging into the second

−(ln x u′2(x)) (2x) + u′2(x) (2x ln x + x) = ln x

Simplifying:
u′2(x) = x−1 ln x .

Going back to u′1(x):
u′1(x) = −(ln x)2x−1

So we have
u′1(x) = −(ln x)2x−1 , u′2(x) = (ln x)x−1 .

Integrating (we don’t have to worry about the +C)

u1(x) = −1
3

(ln x)3 , u2(x) =
1
2

(ln x)2 .

Finally, we plug these into

Y (x) = u1(x)y1(x) + u2(x)y2(x)

So a particular solution is

Y (x) = −1
3

(ln x)3(x2) +
1
2

(ln x)2(x2 ln x) = (
1
2
− 1

3
)x2(ln x)3 =

1
6
x2(ln x)3 .

So, a particular solution is Y (x) = 1
6x2(ln x)3.

Finally Finally, to get the general solution of the diff.eq. we add the general solution of the
homogeneous version c1y1(x) + c2y2(x), which in this problem is c1x

2 + c2x
2 ln x.

Answer to 13.3: The general solution of the diff.eq. is y(x) = c1x
2 + c2x

2 ln x + 1
6x2(ln x)3.

5


