By Doron Zeilberger

Important Theorem (Complicated Version)

If the functions $p(t), q(t), g(t)$ are continuous on an open interval I, and if $y_{1}(t)$ and $y_{2}(t)$ are independent solutions of the homogeneous diff.eq.

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=0
$$

then a particular solution of the inhomogeneous diff.eq.

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=g(t)
$$

is given by

$$
-y_{1}(t) \int_{t_{0}}^{t} \frac{y_{2}(s) g(s)}{W\left(y_{1}, y_{2}\right)(s)} d s+y_{2}(t) \int_{t_{0}}^{t} \frac{y_{1}(s) g(s)}{W\left(y_{1}, y_{2}\right)(s)} d s
$$

where $W\left(y_{1}, y_{2}\right)(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)$.

Important Theorem (Simple Version)

If the functions $p(t), q(t), g(t)$ are continuous on an open interval I, and if $y_{1}(t)$ and $y_{2}(t)$ are independent solutions of the homogeneous diff.eq.

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=0
$$

then a particular solution of the inhomogeneous diff.eq.

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=g(t)
$$

is given by

$$
Y(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)
$$

where $u_{1}(t), u_{2}(t)$ are two functions whose derivatives satisfy the system of two equations

$$
\begin{gathered}
u_{1}^{\prime}(t) y_{1}(t)+u_{2}^{\prime}(t) y_{2}(t)=0 \\
u_{1}^{\prime}(t) y_{1}^{\prime}(t)+u_{2}^{\prime}(t) y_{2}^{\prime}(t)=g(t)
\end{gathered}
$$

Problem 13.1: Using Variation of Parameters, find a particular solution of

$$
y^{\prime \prime}(t)-y^{\prime}(t)-2 y(t)=2 e^{-t}
$$

Solution of 13.1: The characteristic equation of the homog. version is $r^{2}-r-2=0$. Factoring $(r-2)(r+1)=0$, whose roots are $r=2, r=-1$, so

$$
y_{1}(t)=e^{-t} \quad, \quad y_{2}(t)=e^{2 t}
$$

We also need the derivatives

$$
y_{1}^{\prime}(t)=-e^{-t} \quad, \quad y_{2}^{\prime}(t)=2 e^{2 t}
$$

The function $g(t)$ is the right hand side (after we have divided by the coefficient of $y^{\prime \prime}(t)$, in this case it is 1), so $g(t)=2 e^{-t}$.

We are looking for two functions $u_{1}^{\prime}(t)$ and $u_{2}^{\prime}(t)$ such that

$$
\begin{gathered}
u_{1}^{\prime}(t) e^{-t}+u_{2}^{\prime}(t) e^{2 t}=0 \\
u_{1}^{\prime}(t)\left(-e^{-t}\right)+u_{2}^{\prime}(t)\left(2 e^{2 t}\right)=2 e^{-t},
\end{gathered}
$$

Cleaning up (multiplying by e^{t})

$$
\begin{gathered}
u_{1}^{\prime}(t)+u_{2}^{\prime}(t) e^{3 t}=0 \\
-u_{1}^{\prime}(t)+2 u_{2}^{\prime}(t) e^{3 t}=2
\end{gathered}
$$

From the first equation, we get

$$
u_{1}^{\prime}(t)=-e^{3 t} u_{2}^{\prime}(t)
$$

Pluging into the second

$$
e^{3 t} u_{2}^{\prime}(t)+2 e^{3 t} u_{2}^{\prime}(t)=2 .
$$

Collecting terms

$$
3 e^{3 t} u_{2}^{\prime}(t)=2
$$

Dividing by $3 e^{3 t}$:

$$
u_{2}^{\prime}(t)=\frac{2}{3} e^{-3 t}
$$

Going back to $u_{1}^{\prime}(t)$:

$$
u_{1}^{\prime}(t)=-e^{3 t} \frac{2}{3} e^{-3 t}=-\frac{2}{3}
$$

So we have

$$
u_{1}^{\prime}(t)=-\frac{2}{3} \quad, \quad u_{2}^{\prime}(t)=\frac{2}{3} e^{-3 t} .
$$

Integrating (we don't have to worry about the $+C$)

$$
u_{1}(t)=-\frac{2}{3} t \quad, \quad u_{2}(t)=-\frac{2}{9} e^{-3 t}
$$

Finally, we plug these into

$$
Y(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)
$$

$$
Y(t)=\left(-\frac{2}{3} t\right) e^{-t}-\frac{2}{9} e^{-3 t} e^{2 t}=-\frac{2}{3} t e^{-t}-\frac{2}{9} e^{-t} .
$$

First Answer to 13.1: A particular solution is $Y(t)=-\frac{2}{3} t e^{-t}-\frac{2}{9} e^{-t}$.
But since the second term is a multiple of $y_{1}(t)$ and adding or subtracting any constant multipe of $y_{1}(t)$ and/or $y_{2}(t)$ from a particular solution is still (another, possibly simpler) particular solution, we can forget about the second term and get

Second Answer to 13.1: An even better particular solution is $Y(t)=-\frac{2}{3} t e^{-t}$.
Problem 13.2: Using Variation of Parameters, find a particular solution of

$$
y^{\prime \prime}(t)-2 y^{\prime}(t)+y(t)=\frac{e^{t}}{1+t^{2}}
$$

Solution of 13.2: The characteristic equation of the homog. version is $r^{2}-2 r+1=0$. Factoring $(r-1)^{2}=0$, and there is a double root, $r=1$. So

$$
y_{1}(t)=e^{t} \quad, \quad y_{2}(t)=t e^{t} .
$$

We also need the derivatives

$$
y_{1}^{\prime}(t)=e^{t} \quad, \quad y_{2}^{\prime}(t)=(t+1) e^{t}
$$

The function $g(t)$ is the right hand side (after we have divided by the coefficient of $y^{\prime \prime}(t)$, in this case it is 1), so $g(t)=\frac{e^{t}}{t^{2}+1}$.

We are looking for two functions $u_{1}^{\prime}(t)$ and $u_{2}^{\prime}(t)$ such that

$$
\begin{aligned}
u_{1}^{\prime}(t) e^{t}+u_{2}^{\prime}(t) t e^{t} & =0 \\
u_{1}^{\prime}(t) e^{t}+u_{2}^{\prime}(t)(t+1) e^{t} & =\frac{e^{t}}{1+t^{2}}
\end{aligned}
$$

Cleaning up (dividing by e^{t})

$$
\begin{aligned}
u_{1}^{\prime}(t)+u_{2}^{\prime}(t) t & =0 \\
u_{1}^{\prime}(t)+(t+1) u_{2}^{\prime}(t) & =\frac{1}{1+t^{2}} .
\end{aligned}
$$

From the first equation, we get

$$
u_{1}^{\prime}(t)=-t u_{2}^{\prime}(t)
$$

Pluging into the second

$$
-t u_{2}^{\prime}(t)+(t+1) u_{2}^{\prime}(t)=\frac{1}{1+t^{2}},
$$

Simplifying:

$$
u_{2}^{\prime}(t)=\frac{1}{1+t^{2}}
$$

Going back to $u_{1}^{\prime}(t)$:

$$
u_{1}^{\prime}(t)=-t u_{2}^{\prime}(t)=-\frac{t}{1+t^{2}}
$$

So we have

$$
u_{1}^{\prime}(t)=-\frac{t}{1+t^{2}} \quad, \quad u_{2}^{\prime}(t)=\frac{1}{1+t^{2}}
$$

Integrating (we don't have to worry about the $+C$)

$$
u_{1}(t)=-\frac{1}{2} \ln \left(1+t^{2}\right) \quad, \quad u_{2}(t)=\arctan t
$$

Finally, we plug these into

$$
Y(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)
$$

So

$$
Y(t)=-\frac{1}{2} e^{t} \ln \left(1+t^{2}\right)+t e^{t} \arctan t
$$

Answer to 13.2: A particular solution is $Y(t)=-\frac{1}{2} e^{t} \ln \left(1+t^{2}\right)+t e^{t} \arctan t$.
Problem 13.3: Verify that the given functions $y_{1}(x), y_{2}(x)$ are solutions of the corresponding homogeneous linear diff.eq., and find the general solution of the diff.eq.

$$
x^{2} y^{\prime \prime}(x)-3 x y^{\prime}(x)+4 y(x)=x^{2} \ln x \quad, \quad x>0 \quad ; \quad y_{1}(x)=x^{2} \quad, \quad y_{2}(x)=x^{2} \ln x .
$$

Solution of 13.3: $y_{1}(x)=x^{2} \quad, \quad y_{1}^{\prime}(x)=2 x \quad, \quad y_{1}^{\prime \prime}(x)=2$, so

$$
x^{2} y_{1}^{\prime \prime}(x)-3 x y_{1}^{\prime}(x)+4 y_{1}(x)=x^{2}(2)-3 x(2 x)+4 x^{2}=2 x^{2}-6 x^{2}+4 x^{2}=0
$$

Also

$$
y_{2}(x)=x^{2} \ln x \quad, \quad y_{2}^{\prime}(x)=2 x \ln x+x \quad, \quad y_{2}^{\prime \prime}(x)=2 \ln x+2+1=2 \ln x+3, \text { so }
$$

$$
x^{2} y_{2}^{\prime \prime}(x)-3 x y_{2}^{\prime}(x)+4 y_{2}(x)=x^{2}(2 \ln x+3)-3 x(2 x \ln x+x)+4 x^{2} \ln x=0 .
$$

So both $y_{1}(x)=x^{2}$ and $y_{2}(x)=x^{2} \ln x$ are indeed solutions of the homogeneous version.
The function $g(x)$ is the right hand side after we have divided by the coefficient of $y^{\prime \prime}(t)$, so $g(x)=\ln x$,

We are looking for two functions $u_{1}^{\prime}(x)$ and $u_{2}^{\prime}(x)$ such that

$$
\begin{gathered}
u_{1}^{\prime}(x) x^{2}+u_{2}^{\prime}(x) x^{2} \ln x=0, \\
u_{1}^{\prime}(x)(2 x)+u_{2}^{\prime}(x)(2 x \ln x+x)=\ln x,
\end{gathered}
$$

From the first equation

$$
u_{1}^{\prime}(x)=-(\ln x) u_{2}^{\prime}(x)
$$

Pluging into the second

$$
-\left(\ln x u_{2}^{\prime}(x)\right)(2 x)+u_{2}^{\prime}(x)(2 x \ln x+x)=\ln x
$$

Simplifying:

$$
u_{2}^{\prime}(x)=x^{-1} \ln x
$$

Going back to $u_{1}^{\prime}(x)$:

$$
u_{1}^{\prime}(x)=-(\ln x)^{2} x^{-1}
$$

So we have

$$
u_{1}^{\prime}(x)=-(\ln x)^{2} x^{-1} \quad, \quad u_{2}^{\prime}(x)=(\ln x) x^{-1}
$$

Integrating (we don't have to worry about the $+C$)

$$
u_{1}(x)=-\frac{1}{3}(\ln x)^{3} \quad, \quad u_{2}(x)=\frac{1}{2}(\ln x)^{2} .
$$

Finally, we plug these into

$$
Y(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)
$$

So a particular solution is

$$
Y(x)=-\frac{1}{3}(\ln x)^{3}\left(x^{2}\right)+\frac{1}{2}(\ln x)^{2}\left(x^{2} \ln x\right)=\left(\frac{1}{2}-\frac{1}{3}\right) x^{2}(\ln x)^{3}=\frac{1}{6} x^{2}(\ln x)^{3} .
$$

So, a particular solution is $Y(x)=\frac{1}{6} x^{2}(\ln x)^{3}$.
Finally Finally, to get the general solution of the diff.eq. we add the general solution of the homogeneous version $c_{1} y_{1}(x)+c_{2} y_{2}(x)$, which in this problem is $c_{1} x^{2}+c_{2} x^{2} \ln x$.

Answer to 13.3: The general solution of the diff.eq. is $y(x)=c_{1} x^{2}+c_{2} x^{2} \ln x+\frac{1}{6} x^{2}(\ln x)^{3}$.

