Solutions to the "QUIZ" for Lecture 9

1. Find $\frac{\partial f}{\partial r}$ and $\frac{\partial f}{\partial s}$ as functions of r and s, if

$$
f(x, y)=x^{2}+2 x y^{2}+2 y^{3}
$$

and the variables are related by $x=r+2 s$ and $y=3 r+2 s$. You do not need to simplify!

Solution:

$$
\begin{gathered}
f_{r}=\left(f_{x}\right)\left(x_{r}\right)+\left(f_{y}\right)\left(y_{r}\right)=\left(2 x+2 y^{2}\right)(1)+\left(4 x y+6 y^{2}\right)(3)=2 x+2 y^{2}+12 x y+18 y^{2} \\
f_{s}=\left(f_{x}\right)\left(x_{s}\right)+\left(f_{y}\right)\left(y_{s}\right)=\left(2 x+2 y^{2}\right)(2)+\left(4 x y+6 y^{2}\right)(2)=4 x+4 y^{2}+8 x y+12 y^{2}
\end{gathered}
$$

So far this is correct, but you were asked to express everthing in terms of r and s. Plugging-in $r+2 s$ for x and $3 r+2 s$ for y, we get

$$
\begin{gathered}
f_{r}=2(r+2 s)+2(3 r+2 s)^{2}+12(r+2 s)(3 r+2 s)+18(3 r+2 s)^{2} . \\
f_{s}=4(r+2 s)+4(3 r+2 s)^{2}+8(r+2 s)(3 r+2 s)+12(3 r+2 s)^{2} .
\end{gathered}
$$

That's the final answers.
2. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if

$$
x^{2}+y^{2}+z^{2}=5 x y z+1 .
$$

Solution: First move everything to the left:

$$
x^{2}+y^{2}+z^{2}-5 x y z-1=0
$$

Call the left side $F(x, y, z)$. So $F(x, y, z)=x^{2}+y^{2}+z^{2}-5 x y z-1$. By the short-cut formulas for implicit differentiation

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}} \\
& \frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}
\end{aligned}
$$

We have

$$
F_{x}=2 x-5 y z \quad, \quad F_{y}=2 y-5 x z \quad, \quad F_{z}=2 z-5 x y
$$

So, we get

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=-\frac{2 x-5 y z}{2 z-5 x y} \\
& \frac{\partial z}{\partial y}=-\frac{2 y-5 x z}{2 z-5 x y}
\end{aligned}
$$

That's the answer.

