Solutions to the "QUIZ" for Lecture 8

1. Find the directional derivative of the function $f(x, y, z)=x y^{2} z^{3}$ at the point $(2,1,1)$ in the direction $\langle 2,-1,-1\rangle$.

Solution: We first find the gradient ∇f.

$$
\nabla f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle .
$$

Since $f_{x}=y^{2} z^{3}, f_{y}=2 x y z^{3}, f_{z}=3 x y^{2} z^{2}$, we have

$$
\nabla f=\left\langle y^{2} z^{3}, 2 x y z^{3}, 3 x y^{2} z^{2}\right\rangle
$$

Next we plug-in the point $(2,1,1)$, i.e. plug-in $x=2, y=1, z=1$.

$$
\nabla f=\left\langle 1^{2} \cdot 1^{3}, 2 \cdot 2 \cdot 1 \cdot 1^{3}, 3 \cdot 2 \cdot 1^{2} \cdot 1^{2}\right\rangle=\langle 1,4,6\rangle .
$$

Next we have to find the unit-vector in the given direction $\langle 2,-1,-1\rangle$. Take the magnitude:

$$
\|\langle 2,-1,-1\rangle\|=\sqrt{2^{2}+(-1)^{2}+(-1)^{2}}=\sqrt{6} .
$$

To get the unit vector \mathbf{u} you divide by the magnitude:

$$
\frac{\langle 2,-1,-1\rangle}{\sqrt{6}}
$$

Finally, the directional derivative is $\nabla f \cdot u$, giving

$$
\langle 1,4,6\rangle \cdot \frac{\langle 2,-1,-1\rangle}{\sqrt{6}}=\frac{1 \cdot 2+4 \cdot(-1)+6 \cdot(-1)}{\sqrt{6}}=\frac{-8}{\sqrt{6}}=-\frac{8 \sqrt{6}}{6}=-\frac{4 \sqrt{6}}{3} .
$$

Ans.: $-\frac{4 \sqrt{6}}{3}$.
2. Find the maximum rate of change of $f(x, y)=x^{2}+y^{3}$ at the point $(2,1)$ and the direction in which it occurs.

Sol. We first find the gradient $\nabla f=\left\langle f_{x}, f_{y}\right\rangle$. Since $f_{x}=2 x, f_{y}=3 y^{2}$, we have

$$
\nabla f=\left\langle 2 x, 3 y^{2}\right\rangle
$$

Now plug-in $x=2, y=1$ getting:

$$
\nabla f=\left\langle 2 \cdot 2,3 \cdot 1^{2}\right\rangle=\langle 4,3\rangle
$$

The maximum rate of change is the magnitude

$$
\|\nabla f\|=\|\langle 4,3\rangle\|=\sqrt{4^{2}+3^{2}}=\sqrt{25}=5 .
$$

The direction in which it occurs is the unit vector along the direction of the gradient:

$$
\frac{\nabla f}{\|\nabla f\|}=\frac{\langle 4,3\rangle}{5}=\left\langle\frac{4}{5}, \frac{3}{5}\right\rangle .
$$

Ans.: The maximum rate of change is 5 and it occurs in the direction $\left\langle\frac{4}{5}, \frac{3}{5}\right\rangle$.
Note: If you wrote that it occurs in the direction $\langle 4,3\rangle$ that's correct too, but it is nice to give the unit direction.

