Solutions to the "QUIZ" for Lecture 7

1. Compute the partial derivatives with respect to x and y.

$$
z=\ln \left(x^{2}+y^{3}\right)
$$

Sol. $\frac{\partial z}{\partial x}$, alias z_{x} is obtained by treating x as the variable, and y as constant. By the chain-rule:

$$
z_{x}=\frac{1}{x^{2}+y^{3}} \cdot\left(x^{2}+y^{3}\right)^{\prime}=\frac{1}{x^{2}+y^{3}} \cdot 2 x=\frac{2 x}{x^{2}+y^{3}} .
$$

Analogously, $\frac{\partial z}{\partial y}$, alias z_{y} is obtained by treating y as the variable, and x as constant. By the chain-rule:

$$
z_{x}=\frac{1}{x^{2}+y^{3}} \cdot\left(x^{2}+y^{3}\right)^{\prime}=\frac{1}{x^{2}+y^{3}} \cdot 3 y^{2}=\frac{3 y^{2}}{x^{2}+y^{3}}
$$

2. Find an equation of the tangent plane to the given surface at the specified point.

$$
z=x^{2}+y^{2}+2 \quad, \quad(1,1,4)
$$

Sol.: The formula is:

$$
\left(z-z_{0}\right)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) .
$$

Here $x_{0}=1, y_{0}=1, z_{0}=4$. To make sure that z_{0} is correct we do $f(1,1)=1^{2}+1^{2}+2=4$, that agrees. Now

$$
\begin{aligned}
& f_{x}=2 x+0+0=2 x \\
& f_{y}=0+2 y+0=2 y
\end{aligned}
$$

Plugging-in $x_{0}=1, y_{0}=1$, we get

$$
\begin{aligned}
& f_{x}(1,1)=2 \cdot 1=2 \\
& f_{y}(1,1)=2 \cdot 1=2
\end{aligned}
$$

Putting it all together, we have

$$
(z-4)=2(x-1)+2(y-1) .
$$

This is already a correct answer, but you are supposed to simplify to get:

$$
z-4=2 x-2+2 y-2
$$

yielding

$$
z=2 x+2 y
$$

Ans.: An equation for the tangent plane to $z=x^{2}+y^{2}+2$ at the point $(1,1,4)$ is $z=2 x+2 y$.

