Solution to the "QUIZ" for Lecture 22

Evaluate the surface integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ for the given vector field \mathbf{F} and oriented surface S.

$$
\mathbf{F}(x, y, z)=\langle x y, y z, z x\rangle,
$$

and S is the part of the paraboloid $z=1-x^{2}-y^{2}$ that lies above the square $0 \leq x \leq 1,0 \leq y \leq 1$ and has upward orientation.

Solution

The easiest way is to use the formula for explicitly-defined surfaces $z=g(x, y)$, and a vector field $\mathbf{F}=\langle P, Q, R\rangle:$

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{D}\left(-P \frac{\partial g}{\partial x}-Q \frac{\partial g}{\partial y}+R\right) d A .
$$

where D is the "floor", in this problem $0 \leq x, y \leq 1$.
In this problem $P=x y, Q=y z, R=z x, g(x, y)=1-x^{2}-y^{2}$, so we have

$$
\iint_{D}(-x y(-2 x)-y z(-2 y)+x z) d A=\iint_{D}\left(2 x^{2} y+2 y^{2} z+x z\right) d A .
$$

In addition we must replace z by $g(x, y)\left(1-x^{2}-y^{2}\right.$ in this problem). So we have

$$
\iint_{D}\left(2 x^{2} y+2 y^{2} z+x z\right) d A=\iint_{D}\left(2 x^{2} y+2 y^{2}\left(1-x^{2}-y^{2}\right)+x\left(1-x^{2}-y^{2}\right)\right) d A .
$$

Doing the tedius algebra we get

$$
\int_{0}^{1} \int_{0}^{1}\left(2 x^{2} y+2 y^{2}-2 y^{2} x^{2}-2 y^{4}+x-x^{3}-x y^{2}\right) d x d y
$$

Now you do the inside integral, getting someting in y, and then the outside integral, and it comes out to $\frac{83}{180}$.

Ans. $\frac{83}{180}$ (type number).

