Solutions to the 'QUIZ" for Lecture 20

Version of Nov. 22, 2020, thanks to Shubin Xie (who won 5 dollars)

1. Find an equation for the tangent plane to the parametric surface

$$
x=v^{2} \quad, \quad y=u+v \quad, \quad z=u^{2}
$$

at the point $(1,2,1)$. Simplify as much as you can!
Sol. Here

$$
\mathbf{r}(t)=\left\langle v^{2}, u+v, u^{2}\right\rangle
$$

Taking derivatives with respect to u and v, we get

$$
\begin{aligned}
& \mathbf{r}_{u}=\langle 0,1,2 u\rangle, \\
& \mathbf{r}_{v}=\langle 2 v, 1,0\rangle .
\end{aligned}
$$

Next, we have to find out what are u and v at the point $(1,2,1)$. We have to solve, for u, v :

$$
1=v^{2}, 2=u+v, 1=u^{2}
$$

From the first equation $v=-1$ or $v=1$, from the last, $u=-1$ or $u=1$, but to satisfy the second equation, only $u=1$ and $v=1$ are OK. So we know that at the designated point, $u=1, v=1$.

Plugging these above gives:

$$
\begin{aligned}
& \mathbf{r}_{u}=\langle 0,1,2\rangle, \\
& \mathbf{r}_{v}=\langle 2,1,0\rangle .
\end{aligned}
$$

To find the normal, we take the cross-product

$$
\mathbf{n}=\langle 0,1,2\rangle \times\langle 2,1,0\rangle=\langle-2,4,-2\rangle .
$$

(you do it!).
The equation of the tangent plane is

$$
\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle \cdot \mathbf{n}=0
$$

So, in this problem, it is

$$
\langle x-1, y-2, z-1\rangle \cdot\langle-2,4,-2\rangle=0,
$$

that spells out to:

$$
(-2)(x-1)+4(y-2)+(-2)(z-1)=0 .
$$

Dividing both sides by -2 and simplifying, we get

$$
x-2 y+z=-2 .
$$

Ans. $x-2 y+z=-2$ (type: Eq. of a plane).
2. Evaluate the surface integral

$$
\iint_{S} z d S
$$

where S is the triangular region with vertices $(2,0,0),(0,2,0),(0,0,2)$.
Sol. We first find the equation of the plane passing through the three points. This turns out to be

$$
x+y+z=2
$$

(in this easy case you can do it by "inspection" (adding up the three coordinates always gives you 2 , in general you would have to work hard, doing $\mathbf{n}=\mathbf{A B} \times \mathbf{A C}$ etc.)

Expressing this plane in explicit form, we have

$$
z=2-x-y .
$$

The relevant formula is:

$$
\iint_{S} f(x, y, z) d S=\iint_{D} f(x, y, g(x, y)) \sqrt{1+g_{x}^{2}+g_{y}^{2}} d x d y
$$

where D is the projection of the region on the $x y$-plane.
Here $g(x, y)=2-x-y$, so $g_{x}=-1, g_{y}=-1$, and $\sqrt{1+g_{x}^{2}+g_{y}^{2}}=\sqrt{3}$. So

$$
\iint_{S} z d S=\iint_{D}(2-x-y) \sqrt{3} .
$$

It still remains to find out the region D. The plane $z=2-x-y$ meets the $x y$ plane (alias $z=0$) at the line $x+y=2$. Since $x \geq 0, y \geq 2$ the region D is

$$
D=\{(x, y) \mid x \geq 0, y \geq 0, x+y \leq 2\}
$$

A type I description is

$$
D=\{(x, y) \mid 0 \leq x \leq 2,0 \leq y \leq 2-x\} .
$$

So we get

$$
\int_{0}^{2} \int_{0}^{2-x}(2-x-y) \sqrt{3} d y d x
$$

The inner integral is

$$
\sqrt{3} \int_{0}^{2-x}(2-x-y) d y=\sqrt{3}\left((2-x) y-\left.\frac{y^{2}}{2}\right|_{0} ^{2-x}=\frac{\sqrt{3}}{2}(2-x)^{2} .\right.
$$

The outer integral is:

$$
\frac{\sqrt{3}}{2} \int_{0}^{2}(2-x)^{2} d x=-\left.\frac{\sqrt{3}}{2} \frac{(2-x)^{3}}{3}\right|_{0} ^{2}=\frac{4}{3} \sqrt{3}
$$

Ans.: $\frac{4}{3} \sqrt{3}$ (type: number).

