Solutions to the "QUIZ" for Lecture 19

1. Determine whether or not the vector field

$$
F(x, y, z)=y^{2} z^{3} \mathbf{i}+2 x y z^{3} \mathbf{j}+3 x y^{2} z^{2} \mathbf{k}
$$

is conservative. If it is conservative, find a function f such that $\mathbf{F}=\nabla f$.
Sol. Here $\mathbf{F}=\left\langle y^{2} z^{3}, 2 x y z^{3}, 3 x y^{2} z^{2}\right\rangle$,
so $F_{1}=y^{2} z^{3}, F_{2}=2 x y z^{3}, F_{3}=3 x y^{2} z^{2}$.
$\frac{\partial F_{1}}{\partial y}=2 y z^{3}, \frac{\partial F_{2}}{\partial x}=2 y z^{3}$,
so $\frac{\partial F_{1}}{\partial y}=\frac{\partial F_{2}}{\partial x}$ and the first condition is OK. Also
$\frac{\partial F_{1}}{\partial z}=3 y^{2} z^{2}, \frac{\partial F_{3}}{\partial x}=2 y^{2} z^{2}$,
so $\frac{\partial F_{1}}{\partial z}=\frac{\partial F_{3}}{\partial x}$ and the second condition is OK. Finally
$\frac{\partial F_{2}}{\partial z}=6 x y z^{2}, \frac{\partial F_{3}}{\partial y}=6 x y z^{2}$,
so $\frac{\partial F_{2}}{\partial z}=\frac{\partial F_{3}}{\partial y}$ and the third condition is OK.
Now it is time to find the potential function f.
From

$$
\frac{\partial f}{\partial x}=F_{1}
$$

We get

$$
\frac{\partial f}{\partial x}=y^{2} z^{3}
$$

Integrating with respect to x, we get

$$
f(x, y, z)=\int y^{2} z^{3} d x=x y^{2} z^{3}+g(y, z)
$$

Using

$$
\frac{\partial f}{\partial y}=F_{2}
$$

in other word

$$
\frac{\partial f}{\partial y}=2 x y z^{3}
$$

We get:

$$
2 x y z^{3}+g_{y}(y, z)=2 x y z^{3} .
$$

This meant

$$
g_{y}(y, z)=0 .
$$

Integrating with respect to y, we get:

$$
g(y, z)=\int 0 d y=0+h(z)
$$

Going back above, we have:

$$
f(x, y, z)=x y^{2} z^{3}+h(z)
$$

Using

$$
\begin{gathered}
\frac{\partial f}{\partial z}=F_{3} \\
\frac{\partial f}{\partial z}=3 x y^{2} z^{2}
\end{gathered}
$$

we get

$$
3 x y^{2} z^{2}+h^{\prime}(z)=3 x y^{2} z^{2}
$$

Doing the algebra, we get

$$
h^{\prime}(z)=0 .
$$

Integrating, we get

$$
h(z)=\int 0 d z=0+C
$$

So

$$
f(x, y, z)=x y^{2} z^{3}+C .
$$

But you don't have to write the $+C$.
Ans. $f(x, y, z)=x y^{2} z^{3}$ (type: multivariable function).
2. Show that the line integral

$$
\int_{C} 2 x y^{2} d x+2 x^{2} y d y
$$

is independent of the path C, and evaluate it if C is any path from $(1,0)$ to $(0,1)$.
Sol. Here $\mathbf{F}=\left\langle 2 x y^{2}, 2 x^{2} y\right\rangle$. So $F_{1}=2 x y^{2}, F_{2}=2 x^{2} y$. Since $\left(F_{1}\right)_{y}=4 x y,\left(F_{2}\right)_{x}=4 x y$, $\left(F_{1}\right)_{y}=\left(F_{2}\right)_{x}$ so this is a conservative vector field.

Let's find a potential function.

$$
f(x, y)=\int 2 x y^{2} d x=x^{2} y^{2}+g(y)
$$

So

$$
\frac{\partial f}{\partial y}=2 x^{2} y+g^{\prime}(y)
$$

Using

$$
\frac{\partial f}{\partial y}=2 x^{2} y
$$

We get

$$
2 x^{2} y+g^{\prime}(y)=2 x^{2} y
$$

So $g^{\prime}(y)=0$, and so $g(y)=C$, and

$$
f(x, y)=x^{2} y^{2}
$$

The line-integral (regadless of the path) is always

$$
f(E N D)-f(S T A R T)
$$

The question tells you that the path starts at $(1,0)$ and ends at $(0,1)$. So the answer is:

$$
f(0,1)-f(1,0)=0^{2} \cdot 1-1^{2} \cdot 0=0 .
$$

Ans. 0 (type number).

