Solutions to the "QUIZ" for Lecture 16

1. Compute the Jacobian of the transformation

$$\Phi(r,s) = (rs, r+s)$$

Sol.: Here x = rs, y = r + s and

$$J = (x_r)(y_s) - (x_s)(y_r) = (s)(1) - (r)(1) = s - r .$$

Ans. s - r (type: function of r and s).

2. Let $\mathcal{D} = \Phi(\mathcal{R})$ where $\Phi(u, v) = (u + v, v^2)$ and $R = [0, 6] \times [1, 2]$. Calculate

$$\int \int_{\mathcal{D}} y \, dA \quad .$$

(Note: it is not necessary to compute D).

Sol. Here the transformation is $x = u + v, y = v^2$. The Jacobian is $J = (x_u)(y_v) - (x_v)(y_u) = (1)(2v) - (1)(0) = 2v$.

By the change of variable formula we have

$$\iint_{\mathcal{D}} y \, dA = \iint_{\mathcal{R}} y J \, dA = \iint_{\mathcal{R}} (v^2)(2v) \, dA = \iint_{\mathcal{R}} 2v^3 \, dA$$

R is the rectangle $[0,6] \times [1,2]$, which means:

$$\{(u,v) \mid 0 \le u \le 6, 1 \le v \le 2\}$$

That is both type I and type II. Using the type-I formulation we have

$$\int_0^6 \int_1^2 2v^3 \, dv \, du = \left(\int_0^6 \, du\right) \left(\int_1^2 2v^3 \, dv\right) =$$

$$\left(u\Big|_0^6\right)\left(\frac{v^4}{2}\Big|_1^2\right) = (6-0)\cdot(\frac{2^4-1^4}{2}) = 6\cdot(\frac{15}{2}) = 45 \quad .$$

Ans. 45 (type number).