Solutions to the "QUIZ" for Lecture 16

1. Compute the Jacobian of the transfomation

$$
\Phi(r, s)=(r s, r+s)
$$

Sol.: Here $x=r s, y=r+s$ and

$$
J=\left(x_{r}\right)\left(y_{s}\right)-\left(x_{s}\right)\left(y_{r}\right)=(s)(1)-(r)(1)=s-r
$$

Ans. $s-r$ (type: function of r and s).
2. Let $\mathcal{D}=\Phi(\mathcal{R})$ where $\Phi(u, v)=\left(u+v, v^{2}\right)$ and $R=[0,6] \times[1,2]$. Calculate

$$
\iint_{\mathcal{D}} y d A
$$

(Note: it is not necessary to compute D).

Sol. Here the transformation is $x=u+v, y=v^{2}$. The Jacobian is $J=\left(x_{u}\right)\left(y_{v}\right)-\left(x_{v}\right)\left(y_{u}\right)=$ $(1)(2 v)-(1)(0)=2 v$.

By the change of variable formula we have

$$
\iint_{\mathcal{D}} y d A=\iint_{\mathcal{R}} y J d A=\iint_{\mathcal{R}}\left(v^{2}\right)(2 v) d A=\iint_{\mathcal{R}} 2 v^{3} d A
$$

R is the rectangle $[0,6] \times[1,2]$, which means:

$$
\{(u, v) \mid 0 \leq u \leq 6,1 \leq v \leq 2\}
$$

That is both type I and type II. Using the type-I formulation we have

$$
\begin{gathered}
\int_{0}^{6} \int_{1}^{2} 2 v^{3} d v d u=\left(\int_{0}^{6} d u\right)\left(\int_{1}^{2} 2 v^{3} d v\right)= \\
\left(\left.u\right|_{0} ^{6}\right)\left(\left.\frac{v^{4}}{2}\right|_{1} ^{2}\right)=(6-0) \cdot\left(\frac{2^{4}-1^{4}}{2}\right)=6 \cdot\left(\frac{15}{2}\right)=45 .
\end{gathered}
$$

Ans. 45 (type number).

