Solutions to the “QUIZ” of Lecture 15

1. Use polar coordinates to compute the double integral
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Sol.: The region is the quarter-circle, center origin, radius 1, in the first quadrant. Its polar
coordinates description is:

{(r,) |0<O<m/2 , 0<r<1}

doing the translation we get

/2 pl
/ / (rcos @)(rsin@)r dr df
0 0

This is the most important part. From here, Maple can do it. Doing it by hand, we have
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Ans.: § (type=number).

2. Evaluate the iterated integral by converting it to polar coordinates
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Sol. This is an iterated integral over a type-II region (since the dy integration is outside). Looking
at the limits of integration, the region in question is

{(z,1)|0<y<1,0<xz</1-y2}

This is the quarter-circle, center origin, radius 1, that is located at the first-quadrant. A polar-

coordinates description is
{(r,0)|]0<6<7m/2,0<r <1}



Since 22 + y? = 72 and dydx = dA = rdrdf, the integral equals:
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This is the set-up. In real life you would go to Maple. But here we have to do it by hand.
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we get du = 2rdr, and when r = 0,4 = 0 and when r = 1,u = 1. So

The inner integral is:

Doing the substitution u = r?2
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Now we do the outer integral.
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Ans. @ (type number).
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