Solutions to the "QUIZ" of Lecture 15

1. Use polar coordinates to compute the double integral

$$
\iint_{D} x y d A
$$

where

$$
D=\left\{(x, y) \mid x^{2}+y^{2} \leq 1, x \geq 0, y \geq 0\right\} .
$$

Sol.: The region is the quarter-circle, center origin, radius 1, in the first quadrant. Its polar coordinates description is:

$$
\{(r, \theta) \mid 0 \leq \theta \leq \pi / 2 \quad, \quad 0 \leq r \leq 1\}
$$

doing the translation we get

$$
\int_{0}^{\pi / 2} \int_{0}^{1}(r \cos \theta)(r \sin \theta) r d r d \theta
$$

This is the most important part. From here, Maple can do it. Doing it by hand, we have

$$
\begin{gathered}
\int_{0}^{\pi / 2} \int_{0}^{1} r^{3} \cos \theta \sin \theta d r d \theta=\left(\int_{0}^{\pi / 2} \cos \theta \sin \theta d \theta\right)\left(\int_{0}^{1} r^{3} d r\right) \\
=\left(\int_{0}^{\pi / 2} \frac{\sin 2 \theta}{2} d \theta\right)\left(\int_{0}^{1} r^{3} d r\right)=\left(\left.\frac{-\cos 2 \theta}{4}\right|_{0} ^{\pi / 2}\right)\left(\left.\frac{r^{4}}{4}\right|_{0} ^{1}\right) \\
=\frac{-\cos \pi--\cos 0}{4} \cdot \frac{1}{4}=\frac{2}{4} \cdot \frac{1}{4}=\frac{1}{8} .
\end{gathered}
$$

Ans.: $\frac{1}{8}$ (type=number).
2. Evaluate the iterated integral by converting it to polar coordinates

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} e^{x^{2}+y^{2}} d x d y
$$

Sol. This is an iterated integral over a type-II region (since the $d y$ integration is outside). Looking at the limits of integration, the region in question is

$$
\left\{(x, y) \mid 0 \leq y \leq 1,0 \leq x \leq \sqrt{1-y^{2}}\right\} .
$$

This is the quarter-circle, center origin, radius 1 , that is located at the first-quadrant. A polarcoordinates description is

$$
\{(r, \theta) \mid 0 \leq \theta \leq \pi / 2,0 \leq r \leq 1\}
$$

Since $x^{2}+y^{2}=r^{2}$ and $d y d x=d A=r d r d \theta$, the integral equals:

$$
\int_{0}^{\pi / 2} \int_{0}^{1} e^{r^{2}} r d r d \theta
$$

This is the set-up. In real life you would go to Maple. But here we have to do it by hand.
The inner integral is:

$$
\int_{0}^{1} r e^{r^{2}} d r
$$

Doing the substitution $u=r^{2}$ we get $d u=2 r d r$, and when $r=0, u=0$ and when $r=1, u=1$. So this equalus

$$
\int_{0}^{1} e^{u} / 2=\left.(1 / 2) e^{u}\right|_{0} ^{1}=(1 / 2)\left(e^{1}-e^{0}\right)=\frac{e-1}{2}
$$

Now we do the outer integral.

$$
\int_{0}^{\pi / 2} \frac{e-1}{2} d \theta=\left.\frac{e-1}{2} \theta\right|_{0} ^{\pi / 2}=\frac{e-1}{2} \cdot \frac{\pi}{2}=\frac{(e-1) \pi}{4}
$$

Ans. $\frac{(e-1) \pi}{4}$ (type number).

