Solutions to the "QUIZ" for Lecture 14

1. Evaluate the iterated integral

$$
\int_{0}^{1} \int_{x}^{3 x} \int_{0}^{y} x^{2} y z d z d y d x
$$

Sol. We first do the inner integral

$$
\int_{0}^{y} x^{2} y z d z=x^{2} y \int_{0}^{y} z d z=x^{2} y\left(\left.\frac{z^{2}}{2}\right|_{0} ^{y}\right)=x^{2} y\left(\frac{y^{2}}{2}-\frac{0^{2}}{2}\right)=\frac{x^{2} y^{3}}{2}
$$

We next do the middle integral

$$
\begin{gathered}
\int_{x}^{3 x} \frac{x^{2} y^{3}}{2} d y=\frac{x^{2}}{2} \int_{x}^{3 x} y^{3} d y=\frac{x^{2}}{2}\left(\left.\frac{y^{4}}{4}\right|_{x} ^{3 x}\right)=\frac{x^{2}}{2}\left(\frac{(3 x)^{4}-x^{4}}{4}\right)= \\
\frac{x^{2}}{2}\left(\frac{81 x^{4}-x^{4}}{4}\right)=\frac{x^{2}}{2}\left(\frac{80 x^{4}}{4}\right)=10 x^{6}
\end{gathered}
$$

Finall, we do the outer integral

$$
\int_{0}^{1} 10 x^{6} d x=\left.10 \frac{x^{7}}{7}\right|_{0} ^{1}=\frac{10}{7}
$$

Ans.: $\frac{10}{7}$ (type number).
2. Evaluate the triple integral

$$
\iiint_{E} y z \ln \left(x^{5}\right) d V
$$

where

$$
E=\{(x, y, z) \mid 0 \leq x \leq 1,0 \leq y \leq x, 2 x \leq z \leq 3 x\} .
$$

Sol. We first set-up the volume integral as an iterated integral, following the region E.

$$
\int_{0}^{1} \int_{0}^{x} \int_{2 x}^{3 x} y z \ln \left(x^{5}\right) d z d y d x
$$

We first do the inner integral:

$$
\begin{gathered}
\int_{2 x}^{3 x} y z \ln \left(x^{5}\right) d z=y \ln \left(x^{5}\right) \int_{2 x}^{3 x} z d z=\left.y \ln \left(x^{5}\right) \frac{z^{2}}{2}\right|_{2 x} ^{3 x}= \\
y \ln \left(x^{5}\right) \frac{(3 x)^{2}-(2 x)^{2}}{2}=y \ln \left(x^{5}\right) \frac{9 x^{2}-4 x^{2}}{2}=y \ln \left(x^{5}\right) \frac{5 x^{2}}{2} .
\end{gathered}
$$

We next do the middle integral:

$$
\int_{0}^{x} y \ln \left(x^{5}\right) \frac{5 x^{2}}{2} d y=\ln \left(x^{5}\right) \frac{5 x^{2}}{2} \int_{0}^{x} y d y=\ln \left(x^{5}\right) \frac{5 x^{2}}{2}\left(\left.\frac{y^{2}}{2}\right|_{0} ^{x}\right)=\ln \left(x^{5}\right) \frac{5 x^{2}}{2} \cdot \frac{x^{2}}{2}=\ln \left(x^{5}\right) \frac{5 x^{4}}{4}
$$

We finally do the outer integral

$$
\int_{0}^{1} \ln \left(x^{5}\right) \frac{5 x^{4}}{4} d x
$$

Doing the substition $z=x^{5}$ we get $d z=5 x^{4} d x$, and when $x=0, z=0$, and when $x=1, z=1$. So we have

$$
\int_{0}^{1} \ln (z) \frac{1}{4} d z=\frac{1}{4} \int_{0}^{1} \ln (z) d z
$$

By integration by parts

$\int \ln (z) d z=\int_{0}^{1} z^{\prime} \ln (z) d z=z \ln z-\int z(\ln (z))^{\prime} d z=z \ln z-\int z \cdot(1 / z) d z=z \ln z-\int d z=z \ln z-z$.
So we have

$$
\frac{1}{4} \int_{0}^{1} \ln (z) d z=\left.\frac{1}{4}(z \ln z-z)\right|_{0} ^{1}=\frac{1}{4}[(1 \ln 1-1)-(0 \ln 0-0)] \quad=\frac{1}{4}[(1 \cdot 0-1)-(0-0)]=-\frac{1}{4}
$$

Ans. $-\frac{1}{4}$ (type number).
Comments: 1 . Strictly speaking $0 \ln 0$ is nonsense, since $\ln 0$ is undefined. What I mean by " $0 \ln 0$ " is $\lim _{x \rightarrow 0^{+}} x \ln x$ that is well-known to be 0 (or use L'Hôpital in the form $\frac{\ln x}{x^{-1}}$).
2. I often tell you to simplify before you integrate. In this problem, an obvious simplification is $\ln x^{5}=5 \ln x$, but in this case it does not make things any simpler (in fact, it makes it slightly more complicated).

